(,~-COHOMOLOGY AND METABOLICITY OF NEGATIVELY CURVED
COMPLEXES.

IGOR MINEYEV

ABSTRACT. We prove the analog of de Rham’s theorem for ¢,,-cohomology of the uni-
versal cover of a finite simplicial complex. A sufficient criterion is given for linearity of
isoperimetric functions for filling cycles of any positive dimension over R. This implies
the linear higher dimensional isoperimetric inequalities for the fundamental groups of fi-
nite negatively curved complexes and of closed negatively curved manifolds. Also, these
groups are R-metabolic.

1. INTRODUCTION.

This paper discusses topics related to f,.-cohomology: forms on simplicial complexes
and metabolicity.

Various applications of forms were shown by H. Whitney in [11] and by P. A. Griffiths
and J. W. Morgan in [8]. In particular, de Rham’s theorem was proved for different types
of cohomology. The second section of the present paper lists the necessary definitions and
the third section gives a proof of de Rham’s theorem for /..,-cohomology.

Also we are going to discuss the concept of metabolicity. The term was suggested by
S. Gersten. A group is called metabolic or Z-metabolic if H(200)(X, A) = 0 for any normed
abelian group A, where H () stands for the {y-cohomology and X is a K(G,1) with
finite 2-skeleton. Replacing normed abelian groups with normed vector spaces over R
one obtains the definition of an R-metabolic group. Obviously, “metabolic” implies “R-
metabolic”. Also it can be deduced from the argument in [3] that “R-metabolic” implies
“hyperbolic”, which justifies the choice of the funny term. It is an open question whether
these three concepts are equivalent.

Metabolic groups are of particular interest because, for example, they satisfy the higher
dimensional analog of the linear isoperimetric inequality as shown in [4]. They also admit
a more transparent geometric definition. S. Gersten showed in [5] that the fundamental
group of a closed Riemannian manifold of negative curvature is R-metabolic and in [4] he
suggested that it may be true for the fundamental groups of all finite negatively curved
complexes. The fourth section of the present paper is devoted to proving R-metabolicity
in this case. This was suggested by D. Toledo that forms on complexes may be used here.
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In the fifth section we prove a sufficient criterion for a group to have a linear isoperi-
metric function for cycles of any positive dimension over R. This will imply linear higher
dimensional functions in the cases when G is (1) the fundamental group of a finite nega-
tively curved complex or (2) the fundamental group of a closed negatively curved manifold.
The latter case was shown in [7] by geometric methods.

I am thankful to M. Kapovich and A. Treibergs for their help and to my advisor
S. Gersten for his consideration and for asking me this question.

2. DIFFERENTIAL FORMS ON COMPLEXES AND COHOMOLOGY.

First we need several definitions. For K < 0, let M} be the standard n-dimensional
space of constant curvature K (so it is the Euclidean space E" for K = 0 and the
hyperbolic space H" for K = —1).

Definition 2.1. X is called an My -complex if
(a) X is a simplicial complex,
(b) each closed n-simplex A in X has an embedding f : A — M} onto a convex hull of
n + 1 points in M}, so that A possesses the induced metric, and
(¢) for each simplex A in X, and any face o of A, the inclusion o — A is an isometric
embedding.

For the standard (closed) simplex A", there is an affine embedding fa : A" — E", so
that the images of the 1-faces of A have length 1. This embedding is unique up to an
isometry of E. So any simplicial complex X can be thought of as an E-complex by taking
the embeddings fa : D™ — E". Obviously, the conditions (a),(b), and (c) are satisfied.

Definition 2.2. A constant appearing in the discussion below will be called universal if
it depends only on the triangulation of X.

Let A be a (closed) simplex in an Mg-complex X and o be a face of A. Viewing A as
embedded into M} by fa, there is a unique hyperplane P in M} with PN fa(A) = fa(o),
so there is a unique isometry M — P taking f,(c) onto fa(o).

By an abuse of notation, we will usually identify each simplex A in X with its image
fa(A) in M}t. Viewing each simplex A of X as embedded into the standard space enables
us to talk about the tangent space to A. By that we mean the restriction of a tangent
space from a neighborhood of A. We denote it by T'A. Also, the discussion above implies
that these tangent spaces are compatible in the sense that if o is a face of A, then the
inclusion o — A induces an inclusion (= injective bundle map) T'o — TA, which is, by
definition, the restriction of the bundle map induced by the immersion My ! — P.

An r-form on A™ is the restriction to A of a smooth r-form in an open neighborhood
of Ain Mj. 1If o is a face of A and wa and w, are forms on A and o, respectively, we
say that w, is compatible with wa if w, is the pull-back of wa under the inclusion o — A.

Definition 2.3. A form w on a Mg-complex X is a collection of forms wa, one for each
simplex A in X, such that w, is compatible with wa whenever o is a face of A.
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Given a form w = {wa } on X, the differentials dwa are well defined forms on simplices
A. Also, if i : 0 — A is an inclusion of a face o to A, then dw, = (d 0 i*)(wa) =
(*od)(wa) = i*(dwa). It shows that the collection {dwa} is compatible under restrictions
to faces, so it gives a form on X, which we denote by dw and call the differential of w.

All the above definitions work in a more general setting, namely for forms with values
in an arbitrary Banach space V. We describe them as follows.

For a finite dimensional space L with basis z1,....x,, L) denotes the quotient of the
r-fold tensor product L®" by the alternating relations 1 ® ... ® x, = 0 whenever z; = z;
for some 1 < ¢ < j <r. x; A.. Az, denotes an element of Ly, z; € L, 1 <1 < 7.
The elements of Ly, are called r-multivectors (skew-symmetric tensors is another name).
{ex | A= (i1,..., %), < ... <4} is a standard basis of Ly, where ey := x;, Ao Ax;. A
scalar product on L induces a scalar product on Ly, which corresponds to the f;-norm
on Ly with respect to the standard basis.

Each simplex A possesses a vector bundle (7'A),) defined fiberwise as (1,A)p, p € A.
A V-valued form w (or a form when V' is understood) on A is a choice of a linear function
wy : (T,A)p) — V for each p € A so that for any smooth section s of the bundle (T'A),,
wy(s(p)) is a smooth function of p. Now a V-form on X is defined as in Definition 2.3.
Generalizing the standard definition of de Rham complex, we let *(X, V') be the complex
of (smooth) forms on simplicial complex X with the usual differential.

The norm on (T'A), gives rise to the sup-norm |- |, on the forms w, : (T,A)p) — V by
the rule |w| == supy <, pex [wp(f)]-

Fix an orthonormal coordinate system z1, ...,z on each simplex A¥ in X’ and equip
X with the pull-back coordinate system.

Definition 2.4. A form w on X is called bounded if |w| is bounded by a universal con-
stant.

Now (X, V) is the space of bounded forms in Q*(X, V') whose differentials are also
bounded. Obviously, €2;(X,V) is a subcomplex of de Rham complex with the induced
differential d. H)(X, V) will stand for the homology of 2;(X, V).

There is a close relationship between forms and simplicial cochains. The well known
de Rham’s theorem establishes an isomorphism between H*(M,R) and Hj,(M,R), the
latter being the homology of de Rham complex for a manifold M. In [8], Griffiths and
Morgan proved an analogous result for polynomial forms with rational coefficients on
simplicial complexes. First, our goal is to show an isomorphism H(X,V) = H (*oo)(X V)
of {,-cohomology (see the definition below) in the case when X is the universal cover of
a finite simplicial complex X’. The proof will be a refinement of the argument in [8] with
some care taken about boundedness and smoothness.

Definition 2.5. A normed abelian group A is an abelian group with a norm |-|: A — Ry
satisfying the following properties: (1) | —a| = |a|, (2) |a] = 0 & a = 0, and (3)
| +b] < af + [b].
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FIGURE 1. ¢ is 1 above s and 0 below t.
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Given a normed abelian group A and a complex X as above, a cellular cochain ¢ €
C"(X, A) is called bounded if there is a constant K = K(c) > 0 so that |c(o)| < K for any
r-celloin X. C7 (X, A) will denote the subgroup of all bounded cochains in C"(X, A). Tt
is an easy exercise to show that 6(C7 (X, A)) C C'E“;; (X, A), where ¢ is the coboundary
homomorphism in C*(X, A) (here we use the fact that X has finitely many types of
simplices). So C’E*OO)(X , A) is a chain complex and we denote its homology by H, (*OO)(X JA).

Let X be the universal cover of a finite n-dinensional simplicial complex X’ with the
induced simplicial structure, and let G' be the fundamental group of X’. As we saw before,
X is an E-complex. Given a Banach space V, there is a homomorphism I : Q"(X,V) —
C"(X, V) obtained by integration over simplices. More precisely, for w € Q*(X, V), we
define the r-cochain I(w) by I(w)(0) := [ w where o is an r-simplex in X. This integral
is well defined since V' is complete.

Up to G-equivariance there are only finitely many simplices in X, so their areas are
bounded by a universal constant. It follows that /(w) is a bounded cochain whenever w
is a bounded form. Thus [ restricts to a homomorphism I : Q7 (X, V) — C7 (X, V).
Also, Stokes” theorem precisely states that I commutes with differentials, so I induces a
homomorphism I, : Hy(X.V) — H{ (X, V) in homology, which we call the integration
map.

In [11], in the case when X is a manifold, Whitney describes amap W : C*(X, V) — Q*(X, V)
(¢ in the notation of [11]). For our purposes we will need the following modified version
of this map. Let A be an n-dimensional simplex in E" whose edges have length 1, where
n is the dimension of X. Let w be a vertex of A. Moving A by an isometry of E" we
can arrange that the codimension one face of A not containing w lies in the standard
hyperplane E" ! = {(z1,...,z,) € E" | 2, = 0} of E" and that the nth coordinate of w is
positive (see. Fig. 1).

Let y be the nth coordinate of the center of mass of A. Choose constants ¢ and s
with 0 < t < s <y, and let f : R — R} be a smooth function with f((—o0,t]) = 0,
f([s,00)) = 1. Define p(z1,...,x,) = f(z,).

Now for each vertex p in X we describe a smooth function ¢, : X — R, as follows.
Take an arbitrary simplex ¢ in X. If p is not a vertex in o, define ¢,|, := 0. If p is a
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vertex in o, map o isometrically onto a face in A so that p is taken to w. Note that this
isometric embedding of a face is unique up to an isometry of E* preserving ¢. ¢,|, is
then defined as the pull-back of ¢ on A.

Obviously ¢, is a well defined smooth function on X since it is compatible with restric-
tions to faces, and its support is contained in Star(p). (For a simplex o in X, Star(o)
is the union of the open simplices in X whose closure contains ¢ as a face.) Also, ¢ was
so chosen that the interiors of the supports of functions {¢, | p € X©} form a locally
finite cover of X. Therefore, we obtain a partition of unity {1, | p € X} by taking

Uy, = N & S
i qux(m Pq

Now, for each k-simplex o =< py, ..., pr. > in X, define
Wi(o) =1y, if k=0

k
(1) W (o) = k0> Uy, dibpy Ao Ay, A Adihy,. if k> 1.
i=0

(Here by abuse of notation o is identified with the k-cochain taking value 1 on ¢ and 0
everywhere else.) More precisely, W (o) is a collection of k-forms W (o)|a defined on sim-
plices Al of X. Each W (0)|a can be extended to a neighborhood of Al in E' by formula (1),
since the functions ¢,, extend. Obviously, the collection {W (o)|a | A is a simplex in X}
is compatible with restrictions to faces. Thus, W(o) is a k-form on X. Note that the
support of W (o) is contained in Star(c). The map W : C*(X, V) — QF(X, V) is defined
by W(>_, as0) :=>, a,W(0), a, € V. We call W the Whitney map.

Any Mpg-complex can be given an E-structure so that the identity map induces a
diffeomorphism between the two structures on each simplex (proof inductively on skeleta).
It means that the Whitney map can be defined for any Mg-complex X.

Lemma 2.6. W : C*(X,V) — Q*(X,V) is a chain map.

We only need to show that Wé = dW for the differentials § and d in C*(X, V) and
O (X, V), respectively. The proof is an exercise or refer to [11], p.140.

The image under W of a bounded simplicial chain is a bounded form, since |W(o)| is
bounded independently of o, and the cover

{supp(W (0)) | o is a simplex in X}
is (uniformly) locally finite. Hence W restricts to a map W : C7 (X, V) — (X, V).
Lemma 2.6 implies that W induces a map W, : H{ (X, V) — Hy(X, V) in homology.

Lemma 2.7. The Whitney map W : C*(X, V) — Q*(X, V) is a section of the integration
map I : (X, V) — C*(X, V). In particular, W : C7\(X,V) — Q (X, V) is a section
of I (X, V) — Ci (X, V).

Proof. We repeat the proof of an analogous lemma in [11]. If ¢ is a k-simplex in X, then
the support of W (e) is contained in Star(c). Hence, for any k-simplex o distinct from
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(ToW)(0)] (") = [(T(W / W(o

It remains to prove that, for o/ = o, [(I o W)(0)] (¢) = 1. We show this by induction on
the dimension of o.

If o =<p >, then W(<p>)(<p>)=p,(p) =1. If 0is a k-simplex in X, then
Jo can be viewed as a (k — 1)-cochain. The k-cochain §(0o) takes value 1 on o, so the
forms W (o) and W (6(00)) coincide when restricted to o. Then, using Lemma 2.6, Stokes’
theorem, and the induction hypotheses,

(1o W)(o / W(o / W(5(90)) = / AW (@0) = | W(oo) =1

The last equality holds by the induction hypothesis. Lemma 2.7 is proved. O

3. DE RHAM’S THEOREM FOR /{,,-COHOMOLOGY.

For the rest of this section X’ will denote a finite simplicial complex, and X will be the
universal cover of X’. As we saw before, X and X’ are E-complexes. Our goal is to prove

Theorem 3.1 (“Bounded” de Rham). The maps

L HYX.V) — H (X, V) and W, : Hjy (X, V) — HY (X, V)

o0)
are mutually inverse isomorphisms for any Banach space V.

Our main tools will be the following bounded versions of the extension lemma and the
Poincaré lemma (cf [§]).

Lemma 3.2 (Poincaré lemma, a “bounded” version). There is a universal constant C
such that if C(L) is a simplicial subcomplex in X which is the cone over a finite complex
L (with the structure of a simplicial complex induced from L) and w is a closed form in
QLUC(L), V), then, for some 1 € QL H(C(L),V),

(a) w=dy, and
(b) [¢] < Clw].

Proof. The proof is essentially the standard proof of the Poincaré lemma for manifolds.
Let w be the vertex of the cone. Given a closed I-form w on C(L), let C(0) be the cone
over a k-dimensional simplex ¢ in L, and restrict w to C(o). By definition of a form on
a simplex it means that C(o) is viewed as embedded into EF*! and w is defined on a
neighborhood U of C(0). Without loss of generality we can assume that U is star-shaped
with respect to the vertex w of C(c), and that w is the origin 0 in EF+,

We define a map H : U x [0,1] — U by H(z,t) := txz. Obviously, H is smooth,
Hl|yxqy = idy and H|yxqoy = 0, so H is a smooth contraction of U. It follows that w is
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exact, i.e. w = di, where 1 is obtained by integration of w along straight lines from 0 in
EF+1. More precisely, 1 is defined by

1
0 . .
V(i Ao Ayg) = / w(a A (H o)y Ao A(H 04y)v;1)dt,
0

where i; : U — U x [0, 1] is the inclusion on the ¢ level. Note that v is smooth. Since the

basis elements 8%1, e % are distorted by inclusions 7; only a bounded amount and w is

bounded, this implies that the value of ¢ on the basis of (7,A)},_1; is bounded by Cp|w|

for some universal constant Cy. Then |¢| < C|w| for some universal C. If ¢’ is a face in o

then C'(0') is a face in C(0). For each point p € C'(¢’) the definitions of 1, with respect

to C'(0’) and with respect to C'(o) coincide since the straight segment [v, p| lies in C'(o”).

Hence v is a form on C(L) and Lemma 3.2 is proved. O
Let A™ be the standard n-simplex.

Lemma 3.3 (Extension lemma, a “bounded” version). For any integer n there is a con-
stant Cy, > 0 such that if ¢ is a form in QL(OA™, R), then there is a form ¢ in QL (A" R)
such that

(a) @ loan= ¢,

(b) |@l < Calel], and

(¢) |do| < C (el + |de] ).

Proof. For | > n—1 the statement is obvious since ¢ is identically zero. So we can assume
that [ <n — 1.
Step 1. First, let ™! be the standard simplex, and « be an [-form on 6™ . Once and
for all, fix a smooth function A : [0,1] — R such that &([0,3]) = 0, 2([3,1]) = 1 and
h([0,1]) C [0, 1]. Denote
co = max{|h]oe, |W]oc} > 1

(co = 10 will work) and let pr : 0 x [0, 1] — o be the obvious projection. Let (z1, ..., 2,-1)
denote a coordinate system on o and z,, be the standard coordinate on [0,1]. Denote
B(x1, ., ) = h(zy,) - pr*(a)(zy, ..., x,). Note that actually pr*(«) does not depend on
x,. Obviously, |8lsxj01] < |als. since |h| < 1.

If @ =", ayds’, then

- O(arh -
B = ZZ%M/\M:
j=1 I

= Z(oqa—hdx A dz’ +Zh%dxj ANdz"y =R -a+h-dao,
n oz
so we have @ = ' - a+ h - do| < co(lo] + Lda{)
Step 2. Now let o be a codimension 1 face of A, a be a form on o, and v be the vertex
of A not contained in o. A is the join of v and o. If 7 : A\ {v} — o is the stereographic
projection from the vertex v and g : 0 x [0, 1] — A is the map taking o x {0} to v, o x {1}
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identically to o, and segments {pt} x [0, 1] linearly to segments [v, pt], then the following
diagram commutes.

UX(O,I}—g’A\{U}
A

Given a form a on o, by Step 1 there is an extension § on o x [0, 1] with
18] < al, [dB] < co(a]+|dal). The restriction g|, (1 1 is a diffeomorphism onto its image,

so we can define a form @ on g(o X [% 1]) as the push-forward of 3 via g, and extend it by
zero on the rest of A. a is obviously an extension of a. Since g, 1 ;) shrinks distances

O'X[%

UX[%
no more than twice,

@] = [alpyqp ] < 277181 < 2" Mol < elal
and
|da| = |dal 1yl < 277 HdB] < 2" Peo(lal + |dal) = ei(lal + |dal),

where ¢; := 2" !¢;. Note an important property following from the construction that if o
vanishes on a face 7 of o, then a vanishes on the join of 7 and v.

Step 3. Now, given a form ¢ on 0A™, we enumerate the (n — 1)-simplices of JA™ as
{00, ...,0,} and define oy := ¢l|,,. By step 2, there is an extension @ of ag to A™ such
that

o] < crlan] < el
and
|dao| < er(faol + [daol) < er(lp] + [dep]).
The form ¢ — ap vanishes on oy and (assuming that ¢; > 1)
|0 — aol <[] + |ao| < 2ei(le]),
|dip — da| < |dg| + |dap| <
|dop| + cr (|l + |del) < 2er(]op] + |dep]).
Denote oy := (¢ — ap)ls,, extend a; to a; on A so that

|an| < el — ao| < 2611,
|dan| < ci([aa| + [dou) <
ar2e1]] + 2¢1(lo] + |del)] < 2¢i(lg] + |dgl).
Denote ag := ¢ — apg — ay. Since ay vanishes on oy N oy, a; must vanish on oy, hence
ao vanishes on oy U 07. Continuing this process inductively we get that ¢ — > 7" (a; is
identically zero on A™ and

|| < (2e1) el
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|dai] < (21)"(lop] + |dep]),
so by elementary algebra

Izdil < (Y @2e) el < 22e)" (o),

4> ail < 22e0)" (|| + |deg)).
i=0
It shows that ¢ := > @ is the desired extension of ¢, where C, = 2(2¢;)""' =
on*+n+1e0 - This proves the extension lemma. O
Proof of Theorem 3.1. Lemma 2.7 says that W is a section of I, so [ is surjective and we

have a short exact sequence

1
0— (X, V) = QG(X,V) = Ci)(X,V) = 0,
w

where Q5(X, V) is the kernel of I. The conclusion of Theorem 3.1 is equivalent to saying
that the homology of complex (X, V) is trivial. Unraveling what it means one can see
that for the proof of Theorem 3.1 it only remains to show the following lemma.

Lemma 3.4. Let X be the universal cover of a finite simplicial complex, and let p €
QF(X,V) satisfy dp = 0 and [, = 0 for all simplices A¥in X. Then there exists
Y € WX, V) such that dyy = ¢ and [ , 1 =0 for all simplices "1 in X.

Before proving Lemma 3.4 we need the following (cf [8], Lemma 8.4):

Lemma 3.5. There is a constant Cy, depending only on k so that for each closed k-simplex
A in X the following conditions are satisfied:

(ar) Let ¢ be a closed form in (A, V) which vanishes on OA. If r = k, assume also
that fA ¢ =10. Then ¢ = dy for some ) € Qg_l(A, V') which vanishes on OA and
so that || < Cklepl.

(bx) Let @ be a closed form in Q) (OA, V), r > 0. Ifr = k—1, assume also that [, ¢ = 0.
Then o = di for some 1 € QU H(IA, V) so that [¢] < Cilel.

Proof of Lemma 3.5. Now we essentially repeat the argument of [8]. Induction on k.
Cases (ap),(bo) and (by) are obvious.

(a1) In this case A is the segment [0,1]. The statement is obvious for r > 2, since
@ is identically 0. For r = 0, ¢ is a constant function which vanishes on 0A, so ¢ = 0
and the claim follows. For r = 1, we have [ At = 0 and ¢ vanishes on OA'. Take
P(t) = f[O,t] @. Then 9(0) = 0 and (1) = f[O,l] ¢ = 0 by the assumption, so |¢| < C|p]
for some constant C', and ¢ = di).

(ag—1) = (bg) Given A = A* and a closed form ¢ in Q (A, V), let o be a codimension
1 face of A. Then OA\int(o) is a cone over do, so by the Poincaré lemma ¢|pa\int(e) = di
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for some bounded (r — 1)-form ¢ on AA \ int(c). Extend 1 to a bounded form 4 on A

using the extension lemma. Then ¢—di) is a closed r-form on A vanishing on A \int (o).
In the case r = k — 1, by Stokes’ theorem,

/O_(so—dfﬁ)Z/aA(so—dzZ):/Ad(go—dzZ):/Aozo.

So the hypotheses of (a,_1) are satisfied for the form (¢ —di)|,, hence (o —dip)|, = dp for
an (r—1)-form p on o vanishing on do. Extend g by 0 to a form 1z on 0A, so ¢ = d(¢¥+p).
The argument involved only applications of the Poincaré lemma and the extension lemma,
so [¢| < Cklg|, where Cy is calculated from the constants in the lemmas.

(br) = (ak) Let A = A* and ¢ € Q[(A, V) be a closed r-form vanishing on dA. By
the Poincaré lemma, ¢ = dv for some 9 € Q;_I(A, V). We want to find such a form 9
which vanishes on 0A. Since di|ga = ¢loa = 0, then the restriction 1|ga is closed.

In the case 7 = 1, 9|y is a closed 0-form, i.e. it is a constant function ¢ = C' on JA.
Replace 1 by ¥ — C, then ¢|sa = 0 and ¢ = dib, as needed. So we can assume r > 1. In

the case k =r,
[ o= [a=[o=0
dA A A

so the hypotheses of (by) are satisfied for the restriction 1|ga, hence 1)|ya = du for some
p € QL OA, V) and also |u| < Cyltp|. By the extension lemma, p extends to a form g
on A. We have ¢ = d(v — dp) and (¢ — dji)|aa = 0, i.e. ¥ — dp is the form we need. To
satisfy the property [ —dpu| < Ci|p| we enlarge C using the constants from the Poincaré
lemma and the extension lemma. This proves Lemma 3.5. O
Proof of Lemma 3.4. Let ¢ be a k-form as in the hypotheses and n = dimX. Then for
dimension reasons ¢ vanishes on the (k — 1)-skeleton X *~Y. For each k-simplex A in X,
Lemma 3.5(a) gives a (k — 1)-form ¥ so that (1) dva = ¢|a, (2) Yalsa = 0, and (3)
|V | < Cilo|al < Ck|pl|, where Cy depends only on k.

For each simplex o of dimension less than k& define ¢, to be identically 0. Condition
(2) above implies that the collection {1 | A is a simplex in X} gives a form ¥, on X *)
and condition (3) says that 1 is bounded. Using the extension lemma n — k times we
extend 7 to all of X preserving boundedness.

Condition (1) says that the form ¢ — dib; vanishes on X*). Also it is closed since ¢ is.
We apply the same argument to the bounded form ¢ — di);, obtain a bounded form 5 so

that, ¢ —diy —dipy vanishes on X **1 and so on. In the end we have o —di)y —... = _j11
is identically 0 on X = X™. So ¢ = d(11 + ... + ¥,_g41). This finishes the proof of
Lemma 3.4. U

Theorem 3.1 is proved. O

4. METABOLICITY OF NEGATIVELY CURVED COMPLEXES.

Definition 4.1. Given K <0, a simplicial complex X has curvature K if

e X is an My-complex and



£5o-COHOMOLOGY AND METABOLICITY OF NEGATIVELY CURVED COMPLEXES. 11

e the link of each vertex in X viewed as a spherical complex is a CAT(1) space, i.e.
the distance between two points in any geodesic triangle of perimeter < 27 in the
link is at most that between the corresponding points in the comparison triangle in
the unit sphere.

If K <0, X is called negatively curved.
S;(X, R) will denote the set of singular i-chains with coefficients in a ring R.

Definition 4.2. Given an My-complex X, a singular chain c in S;(X, R) is called smooth
if the image of each singular simplex o of ¢ is contained in a closed simplex A of X and o
is an embedding (with respect to the smooth structure on A). C#™ (X, R) denotes the set
of smooth i-chains in X with coefficients in R.

Given a singular i-boundary b in S;(X, R), a smooth filling of b is a smooth chain c in
Si+1(X, R) such that dc = b.

Each smooth singular simplex ¢ with image in a simplex A of X has a Riemannian
metric induced from A. Hence Area(o) is well defined (as the integral of the volume form
over o). For an arbitrary smooth filling ¢ = > a;0y, its area is defined by Area(c) :=

> |ay] - Area(o;).

Definition 4.3. A group G is called R-metabolic if there is a complezx of type K(G, 1)
with finite 2-skeleton and the universal cover X so that the following equivalent conditions
are satisfied:

(1) H(Qoo) (X, V) =0 for any normed vector space V over R.
(2) The inclusion map i : Z1(X,R) — C1(X,R) admits a bounded retractionr : C1(X,R) —
Z1(X,R). Here C1(X,R) is equipped with the {1-norm and Z1(X,R) with the filling

norm.

See [4], Theorem 13.9 for the proof of equivalence (it was proved for coefficients Z and
a normed abelian group instead of a vector space V', but the same argument works for
R).
The main result of this section is

Theorem 4.4. The universal cover X of a finite negatively curved simplicial complexr X'
admits a piecewise smooth combing with bounded areas. In particular, the fundamental
group of X" is R-metabolic.

“Bounded areas” here means that each triangle formed by an edge e and two elements of
the combing has a smooth filling ¢ such that Area(c) is bounded by a constant independent
of e. The main part of the proof is to construct fillings for the triangles. A difficulty here
is to make sure that the filling is smooth. We use a combinatorial argument for this.
Proof of Theorem 4.4. Let v be a basepoint in X, and let G be the fundamental group
of X’. By simultaneous scaling the metric on the simplices of X we can assume that X
has curvature -1. As shown in [1], each point p in X can be connected to v by a unique
geodesic arc [p, v] and also all the geodesic triangles in X satisfy the C AT'(—1) comparison
inequality. It follows then that X is contractible (see [1]), so X' is a finite K (G, 1).
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Proposition 7.7 in [5] says that H{ (X, V) = H{ (X, V) whenever defined, where V is
any normed vector space and V is its completion. So our goal is to establish H (QOO) (X,V)=
0 only for a Banach space V.

By anatural abuse of notation, we identify the edges (= 1-simplices) in the triangulation
of X with elements of C1(X,Z). These elements generate C1(X,Z). Given such an edge
e with endpoints i(e) and t(e), there is a canonical (1-dimensional) triangle b, formed by
the geodesics [v,i(e)], e, and [t(e), v] (subdivided so that each edge lies entirely in a closed
simplex). Again, we think of b, as of the cycle in C{"(X,Z) assigning value 1 to each
singular 1-simplex.

Lemma 4.5. For each edge e in X, there exists a smooth disk filling D, of b. so that
Area(D,) < Length(e).

Assume this lemma for a moment to finish the proof of the theorem.

Let ¢ be a cocycle representing an element in H(Qoo) (X,R), i.e. dc = 0. We take
¢ = W(c) € Q2(X,R), where W is the Whitney map. Then dp = dW (c) = W(dc) = 0,
so ¢ is a closed 2-form on X. For each edge e let D, be a filling guaranteed by Lemma 4.5,

and define
ale) := / ®.

Extending a by linearity (over R) we obtain a 1-cochain a € C'(X,R).

Now, for any 2-simplex A in X, connect the vertices of A by geodesics to the basepoint,
and fill in the obtained geodesic triangles using Lemma 4.5. Let Dya denote the sum of
those fillings. Then using the fact that ¢ is closed and Stokes’ theorem,

(60)(A) = a(9A) = /D o= /A o= 1(2)(A),

so 6a = I(p) = I(W(c)) = c. In other words, ¢ is a coboundary.
It remains to show that a is bounded. But for any edge e, by Lemma 4.5,

a€)= [ ¢ < leldrea(D,) < l¢lLength(e) <
D,
|p| - max{Length(e) | e is an edge in X}
and max{Length(e) | e is an edge in X} is a universal constant. This proves Theorem 4.4
assuming Lemma 4.5.

Now we go to
Proof of Lemma 4.5. Parameterize e by t € [0, 1]. For each ¢, let a; : [0,1] — [v,e(t)] C X
be the map of constant speed onto the unique geodesic [v,e(t)]. Define a(t, s) == ayu(s).
The C'AT(—1) property implies that « is continuous as a function of two variables.

Let B be a large enough finite subcomplex of X containing the image of a. B is the
disjoint union of its open simplices. Fix some ¢ and let o be an open simplex of B, and
let a; be the corresponding geodesic in B. Consider the preimage I, := a; (o) C [0, 1].
First, this preimage must be convex in [0, 1], since ¢ is convex in B (this follows from the
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CAT(—1) property). So I, is either a non-degenerate interval or a point. In the former
case I, must be open in [0, 1]. Indeed, suppose that one of its endpoints, say, p € (0, 1) is
such that a(p) € o and the points just away from p (on one side) are mapped to an open
simplex having ¢ as a face. In this case we can shorten a; near p, which contradicts the
assumption that oy is geodesic.

The discussion above suggests the following definition.

Definition 4.6. Given a map (5 : [0,1] — B of constant speed onto a geodesic in B, a
pattern for G in [0, 1] is
e a finite sequence 0 = sy < $1 < ... < S, = 1 so that the intervals

(507 51)7 {81}7 (817 52)7 {52}7 H2) {Sm—l}v (Sm—lv Sm)

are mapped by 3 to distinct open simplices of B, and also
e a prescription is given to which open simplices of B these intervals are mapped by 3.

The points s; will be called the vertices of the pattern.

As we saw, each geodesic a; gives rise to a pattern which we denote by P;. For a subset
Ain X, carr(A) will denote the open simplex containing A (if it exists). We call two
patterns, P, = {0 = 59 < 51 < ... < 8, = 1} and Py = {0 =s{, < s] < ... < s}, = 1},
equivalent, P, ~ Py, if they are preimages of the same sequence of open simplices in B,
ie. carr(au(so)) = carr(ap(sy)), carr(as (s, $1)) = carr(ap(sy, 81))s -y carr(ai(sm,)) =
carr(ap(s),)). We say that a pattern P; is a limit of the pattern Py if there is a sequence
t; — tin [0, 1] such that P, ~ Py.

Now fix a pattern P and define

Ip:={te[0,1] | P, ~ P},

i.e. Ip is the “preimage” of P in [0,1]. Let x :=infIp, y := sup Ip. If x = y, draw the
geodesic [e(x),v] and go to another pattern P. Suppose now x # y. Patterns P, and P,
are limits of P, i.e. there are sequences x; — « and y; — y with P,, ~ P = P,,.

For each i, the pattern P,, is induced by a,, on the vertical segment {z;} x [0, 1] (see
Fig.2). The vertices of the pattern are 33 Since [x,y| x [0,1] is compact, by taking
a subsequence of x; several times we can assume that sé- converges to a point s; on
{z} x [0,1] when ¢ — oco. Those limit points s; give almost a pattern on {x} x [0, 1] with
the only exception that some of the points s; may coincide. Still, the order of these points
along {z} x [0, 1] is preserved. The same argument applied to the sequence {y;} gives a
pattern on {y} x [0, 1] with points s’ on it. Now we note that both a,(s;) and a,(s})
lie in the closure of the open simplex carr(ayg,(s;)) = carr(ay,(s})), so we can connect
az(s;) and a,(s}) by a geodesic segment in this closure, for each j. Also, each geodesic
quadrilateral 0y (s;), (/)] [y (5}): @y (1)) [y()-1)s (551 [a(55-1), a(55)] s
in a closed simplex of B. If the vertices of this quadrilateral are distinct, draw the diagonal
[ (s5), ay(si_1)] (see Fig. 3). Each “elementary” geodesic triangle obtained in this
way may be filled in by taking the convex hull of its vertices in the closed simplex of B
containing it. We call Dy, ,) the filling obtained by this procedure. Each of the 2-simplices
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F1GURE 2. In the domain of a.

T x;
: y maps to e
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. i
* 491
!/
y Si—1
maps to v

FiGure 3. The filling of a simple triangle.

in Dy, , possesses a metric of curvature -1 induced from the metric on the simplices of B,
i.e. the 2-simplices are isometric to triangles in H?.

Now pattern P is not equivalent to those in {P, | t € [0, 1]\ [z, y]}, so we can apply the
procedure described above to the triangles bie(0),e(x)) and bje(y),e(1), and so on. This process
will terminate since there are only finitely many equivalence classes of patterns P;,. As
the result, the triangle b, is represented as a finite “concatenation” of “narrow” triangles
(see Fig. 4). These triangles may partially or completely degenerate, but after removing
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FiGure 4. Concatenation of simple triangles.
e

/

lIU

the degenerate parts we can assume that each of the “narrow” triangles is simple in the
following sense:

Definition 4.7. Let v be a geodesic segment in a finite pointed complex B of curvature
-1. The geodesic triangle b, is called simple if it admits a smooth filling D. with the
following properties:

o Viewed as an abstract simplicial 2-complex, D., is a triangulated 2-disk each of whose
2-simplices is mapped homeomorphically onto the convex hull of three points in a
closed simplex of B.

e The vertices of D., lie on the two geodesic sides connecting the endpoints of v to the
basepoint.

It suffices only to prove Lemma 4.5 for simple triangles:

Lemma 4.8. For any simple triangle b.,, Area(D.,) < Length(vy), where D, is the filling
of by constructed above.

Proof of Lemma 4.8. In the filling D, enumerate the 1- and 2-simplices starting from the
vertex v’ nearest to the basepoint as shown in Fig. 5. We see that the angles at the
vertices of D, lying in the interiors of the geodesic sides are at least 7, since otherwise we
would be able to shorten the sides.

Let D,, be, as before, the filling of the geodesic triangle of b, (i.e. D., is just the union
of 2-simplices Ay, ..., A;). Start with an isometric embedding f; : A; — H2. There is
a unique way to extend it to an isometric embedding fo : A U Ay — H?. Next, there
is a unique extension f3 : A; U Ay U Ay — H? which is an isometric embedding when
restricted to Ay U Aj. Tterating this procedure we obtain a map f : D, — H? which is an
isometric embedding when restricted to each union A; U A;41. Let I'; denote the convex
hull of f(v;) and f(v') in H2.

By induction on i we will show that f is injective on D,, and that f(D,,) C T .
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FIGURE 5.

T ="Tn

An

o

For i = 1 the statement is obvious. Assume the statement for i. Let [ be the infinite
geodesic containing vertices w and w’ as shown on Fig. 6. Consider D,,,, = D,, U A;;;.
Since the angle 6 between the sides [w',w] and [w',w"] in f(D,,,,) is at least 7 and the
triangles f(A;) and f(A;41) lie on the opposite sides of the geodesic f(7v;), we see that
the segment [w’, w”] must be in the shaded corner. It follows that f|p, , is injective and
f(Dyy) STy

Hence in the end, for i = n, we get

Area(D.,) < Area(f(D,)) < Area(L,,).

In H?, the area of a geodesic triangle is bounded by the length of any side (see [5,
Lemma 12.4]). So the filling D, satisfies Area(D,) < Area(l',) < Length(vy), and
Lemma 4.8 follows. O

This finishes the proofs of Lemma 4.5 and Theorem 4.4. O
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FIGURE 6.

W)

5. HIGHER DIMENSIONAL ISOPERIMETRIC FUNCTIONS.

Definition 5.1. Let X be a cell complex. The ¢1-norm |- |; on C;(X,R), is defined by

)

| > s 00l =" |ag|, and the filling norm | - |; on B;(X,R) is defined by
b :=inf{la]: | @ € Cit1(X,R) and da = b}

for b € B;(X,R).

As shown in [3], in the case when X is the universal cover of a K(G,1) with finite
(7 + 1)-skeleton,
2) Uz Al
on B;(X,R) for some universal constant A > 0. In particular, | - |; is a norm.
Definition 5.2. Let X be a contractible cell complex. A function g : R, — Ry is called

a homological isoperimetric function for i-cycles or isoperimetric function, for shortness,
if1-1r < 9(-h) on Zi(X,R).

Remark. The property of having linear isoperimetric function in dimension 7 can be de-
scribed homologically [6, Theorem 6.1], and hence is a quasiisometry invariant. Therefore
it makes sense to talk about a group having linear isoperimetric function.
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Definition 5.3. Given a cell complex X with a basepoint verter v, an R-combing on X
is an assignment of a chain q,, € C1(X,R) to each vertex w of X so that 0q, = w — v.
An R-combing is called quasigeodesic if there exist S > 0 and a quasigeodesic combing
{pw | we XO} on XV s0 that supp(qy) lies in the S-neighborhood of supp(p.).

We say that a group G admits an R-combing with bounded areas if there exist a cell
complex of type K(G,1) with universal cover X, T > 0, and an R-combing {q,} on X
such that, for any edge e in X, |qie) + € —que)lf <T. (i(e) and t(e) here are the initial
and terminal vertices of e, respectively.)

The main result of this section is

Theorem 5.4. Let G be a finitely presented group. If G admits a quasigeodesic R-
combing with bounded areas, then each inclusion map B;(X,R) — C;(X,R), i > 1, admits
a bounded retraction. In particular, G has a linear isoperimetric function for real cycles
i each positive dimension.

Here B; is equipped with the filling norm and C; with the /;-norm. The following two
theorems will be deduced as corollaries of the main result.

Theorem 5.5. Let G be the fundamental group of a finite negatively curved complex.
Then G has a linear isoperimetric function for real cycles in each positive dimension.

Theorem 5.6 ([7]). Let G be the fundamental group of a closed manifold of negative
sectional curvature. Then G has a linear isoperimetric function for real cycles in each
positive dimension.

Theorem 5.6 was proved in [7] by geometric methods. Note that the cases of a complex
group and a manifold group are not implied by each other, since we consider manifolds
of non-constant negative curvature.

Given a cell complex X, we will always assign length 1 to each of the edges and put the
path metric on the 1-skeleton. For z € X, B, (r) will denote the cellular ball of radius
r centered at x, i.e. it is the union of all cells in X whose vertices lie within distance
r from x. The r-neighborhood of any set in X is defined analogously. Let C; be the
mazximal size of (< i)-cells, i.e. C; is the maximum of the distances between vertices of a
cell, maximum taken over all cells of dimension < 7.

Following [2] we call a group combable if it admits a quasigeodesic combing with the
fellow-traveler property.

Lemma 5.7 (Projection lemma.). Let G be a combable group and X be the universal
cover of a K (G, 1) with finitely many cells in each dimension. Then there exists a sequence
of affine functions R; : Ry — R, and constants L; such that for any r > 0 and x € X®
there exists a chain map

Prse = Pry rs - O* (Xa R) - C*(Bw(RZ(T))7 R)
so that (1) |pri(a)|ly < Lilaly for any a € C;(X,R), and (2) the restriction of pr,. to

Cu(By (1), R) is identity.
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Remark. A K(G,1) with finitely many cells in each dimension always exists for a

combable group as shown in [2].
Proof of Projection lemma. Obviously,  can be taken to be a vertex. Let {p,} be a
(A, €)-quasigeodesic combing on X () based at the vertex z. We can assume that p,, maps
into X©. Also, we extend p,, to a map p,, : [0,00) — X© so that the restriction py, ||
is a (A, €)-quasigeodesic emanating from x and p,([t,, 00)) = w for some t,,.

Fix 7 > 0 and € XM, We will extend the argument used in [9] to construct a cellular
map pry, = pr: X — X inductively on skeleta.

For w € X© define pr(w) := p,(Ar + €). It is easy to see that, for w € B,(r)®,
pr(w) = w, and also, for any w' € X, pr(w') € B,(A(\r +¢) +¢). Define Ry(r) :=
AMAr+€)+¢€ Lo :=1.

Now for each edge e we choose a shortest edge path v connecting pr(i(e)) to pr(t(e)),
and map e to . This extends pr to the 1-skeleton. The fellow-traveler property gives an
upper bound ¢; on the number of edges of . Subdivide e into < §; edges so that pr maps
1-cells to 1-cells of X. Define Ry(r) := Ro(r) + 01, L1 := 05.

We proceed inductively on dimension, mapping each i-cell A to a filling of pr(9A). Sub-
divide A so that i-cells of A are mapped to cells (possibly of smaller dimension). There are
uniform bounds §; on the size of pr(A) and L; on the number of i-cells in the subdivision
of A. Define R;(r) := R; 1(r) + &;. Now pr is defined for X and pr(X®) C B,(R;(r)),
hence pr induces a map pr. : C;(X,R) — C;(B.(R;(r)),R) with the required properties.
Since G acts on X @ cocompactly, R; and L; can be chosen independently of z. Projection
lemma is proved. O

Proof of Theorem 5.4. “Bounded areas” condition implies that G satisfies the linear
isoperimetric inequality for 1-cycles over R. It follows from the argument in [3] that G is
hyperbolic in this case. In particular, G is combable.

Let X be the universal cover of a K (G, 1) with finitely many cells in each dimension.
It is an easy exercise to show that having a quasigeodesic R-combing with bounded areas
is a quasiisometry invariant property, hence X admits such an R-combing {¢,}. Pick a
basepoint vertex v.

Lemma 5.8. Let X be as above. Then for any r > 0 and an integer i > 1 there exist
constants R = R;(r) > 0 and M = M;(r) > 0 such that for any ball B,(r) C X and for
any i-cycle z supported in By (r) there exists a filling a of z supported in B,(R) so that
|a|1 S M|Z|1

Proof. We let R;(r) be the function from Projection lemma. Pick B := B,(r) C X. For
z € Z;(B,R) define

12|75 == 1nf{|a|; | @ € Ciz1(B.(Ri(1)),R) and da = z}.

X is contractible, hence each cycle z in B may be filled with a chain a in X. Projection
lemma implies that a can be projected into the ball B, (R;(r)) so that da = z is preserved.
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Therefore z always has a filling supported in B, (R;(r)), i.e. |-|z5 < 00. Also |-|z,5 > ||f,
by definition, hence | - |;p is a norm.

The norms |-|f g and |-|; are equivalent on Z;(B, R) as two norms on a finite dimensional
vector space, hence there exists a constant M, depending on i,r, and =, such that |z|;p <
M|z|, for any z € Z;(B,R). For a fixed r, the set {B,(r) € X | x € XM} is finite up
to equivariance, hence M can be chosen independently of z. Since Ci1(B,(R(r)),R) is
finite dimensional, the norm |z|s g is realized by a filling a of z, i.e. |a|; = |z|f5 < M|z]|;.
Lemma 5.8 is proved. O

Lemma 5.9. Let X be as above. Then there is a retraction j : C.(X,R) — Z.(X,R) for
the inclusion Z,(X,R) C C.(X,R) with the following property: for each i > 1 there exist
constants S; > 0 and T; > 0 such that for each i-cell A there is a filling an of j(A) so
that supp(aa) lies in the S;-neighborhood of any geodesic connecting a vertex of A to the
basepoint v, and |aa|; < Tj.

Proof. Recall that C; is the maximal size of (< i)-cells in X.

We construct j inductively on 7.

i =1 The R-combing {g,} is S-close to a quasigeodesic combing {p,,}. Since quasi-
geodesics are close to geodesics in hyperbolic spaces, we can assume (changing S if needed)
that {p,} is geodesic. We also make S large enough so that any two geodesics in X1
with corresponding endpoints at distance < 1 are uniformly S-close to each other.

For an edge e we define j(e) := gi(e) + € — qy(e) and extend j by linearity on C; (X, R). It
is easy to see that j(e) is a 1-cycle, and that j is identity on the 1-cycles, i.e. j is indeed
a retraction of the inclusion Z;(X,R) C C}(X,R). Since the R-combing is with bounded
areas, |j(e)|s < T for some 7T independent of e. Then there exists a filling a of j(e) with
lay < T + 1. The only problem is that supp(a) may not lie in a neighborhood of p;).
We fix this as follows.

Let ¢; be the restriction of a to B,(2C%), i.e. ¢; takes the same values as a in B, (2C5)
and 0 everywhere else. Similarly, let h; be the restriction of da = j(e) to B,(2C3). Denote
by := 0c; — hy. Then supp(by) C B,(2C5). Next we define ¢; inductively as the restriction
of a—cy—...—cp_1 to B,(2C5k) and hy, as the restriction of da—hy —...—hy_1 to B,(2Csk).
Denote Slicey, :== B,(2C2k)\ B,(2C3(k—1)). Now supp(dcy,—hy) C SliceyUSlicey, 1. Since
Slicey, and Slicey,—; are disjoint, Ocy, — hy, decomposes as Ocy, — hy, = by, + b}, where b, and
b, are supported in Slicey, and Slicey_1, respectively (see Fig 7). We continue this until
k = m, m being the least integer so that e C B,(2Cym). Define ¢, :=a —¢; — ... — 1,
hpy = 0a — hy — ... — hy—1, and Slice, := X \ B,(2C3(m — 1)). Since the Slice’s are
disjoint and

D ber =) =Y (Ocrs —hy) =0 e = hy=0a—0da=0,
k k

k k

we must have b), = by_,. Here we assume by = b,,, = 0 by definition.



£5o-COHOMOLOGY AND METABOLICITY OF NEGATIVELY CURVED COMPLEXES. 21

Summarizing the discussion above, a has a decomposition a = >, ¢, with supp(c) C
Slicey,, and also Ocy, = hy + by, — by_1, where supp(by) C Slice,. Pick a geodesic p in X
connecting v to a vertex of e. Each supp(hy) C supp(9da) lies in the S-neighborhood of p.

Let zy := p(2C5k — C3) and r := 3C; + S. Then supp(hy) C B, (r). By Projection
lemma each of cg, hy, by is mapped by pry, ,« to By (R2(r)). Let ¢, = pry, r«(ck),
by = Py (Ok) by, = Pra,r«(bk—1). By (1) in the Projection lemma,

(3) k|1 < Lo|ck|:

and by (2), pry, .~ fixes hy, and Ohy. Also Ohy = 0(0cy — by + by—1) = —0by, + Obx_1 and
supp(0Oby) and supp(Oby_1) are disjoint, hence both supports lie in supp(dhy) C B, (r),
SO DIy, »+ fixes Oby, as well.

O(by — bs1) = Pragrw(O0k) — Dl e (Obg) = Oby — Oy, = 0,
so by, — ZN)kH is a 1-cycle, and also
supp(by — bpy1) € By, (1) U By, (1) € B,, (5C; + 5),

then by Lemma 5.8 there is a ﬁNHing di, of by, — b1 with supp(dy) C By (R), R :=
R1(5C5 + S) and |dy|; < M|by — bpy1]1, M := Mi(5Cy + S). Then using 2

|dily < Mlby, — bryaly < M(|bely + |brga]s) <

For a, := Zk(ék + dy,),
aae = Z(aprl“k,r*(ck) + adk) = Z(prxk,r*(ack) + 6].3 — 6k;+1) —

k k
Z(pka,r*(ack) +przk,r*(bk)) - Zprwarl,r*(bk) =
k k
Z(prmk,r*(ack) +prmk,r*(bk) - prmk,vﬂ*(bkfl) -
k
Zprmkm*(hk) - Z hk - 0&,
k k

so a. is a filling of da = j(e), and supp(a.) lies in the Si-neighborhood of the geodesic p,
where 57 1= max{Ry(3Cy + 5), R1(5Cy + S)}. Hence the same is true for any geodesic
from v to an endpoint of e (changing S; if needed). By (3) and (4)

Jach <Y (lel + ldil1) < (Lo + MLy2A)|cly = (Lp + MLy2A) 2|1
k k
Take T} := Ly + M Ly2A. Then a, is the required filling of j(e).

i =i+ 1 We assume that j : C;(X,R) — Z;(X,R) is constructed and satisfies the
induction hypotheses with constants S; and T;. Let C' := C;41 be the size of (< i+ 1)-
cells, and S be the fellow-traveler constant for geodesics in XM, The following constants
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will be used in the proof (R;(r) and M;(r) are the functions from Lemma 5.8):
S'=8;+S, r:=35+2C, r:=r+S58+C, R :=R(35+C),
R" = Ri+1(7’ + R/), M = max{Mi(r), Mi+1(R”)}

Take any (i + 1)-cell A and suppose 0A = >, B0, 5 € R. By induction hypotheses
each j(o;) has a filling a,, and also j is the identity on i-cycles, hence

(5) 8(2 Bias,) = Zﬂzﬁao, = Zﬁlj(gl) = ](Z Bior) = j(0A) = A

ie. Y, B, is a filling of OA. Also S” was so chosen that the support of this filling lies
in the S"-neighborhood of p. By (5) the chain z := A — >, aya,, is an (i + 1)-cycle. We
define j(A) to be z and extend j by linearity to Cj1(X, R).

Let p be a geodesic edge path from v to a vertex of A. Denote xy := p(2rk —r),
yr = p(2rk), k = 1,2,.... The balls B,, (") cover supp(z) (see Fig. 7). Let ¢; be the
restriction of z to B, (r’), i.e. it is the (i + 1)-chain taking the same values as z on the
cells in By, (r') and identically 0 on the rest of cells in X. Since z was a cycle, an exercise
on the triangle inequality gives

supp(dcr) € [By, (r') \ By, (r' = C)[ N By(S") € By, (35" +2C) = By, (r),

where B, (S") denotes the S’-neighborhood of p. Analogously, let ¢y be the restriction of
z —¢1 to By, (r'), and now we have

supp(dcy) C [ (M) \ Be,y (r' = C) N B,(S") €
B,, (35" +2C)U B,, (35" + 2C) = By, (r) U B,,(r).

We continue the same way until 2z — ¢y — ¢ — ... — ¢, = 0, so z has a decomposition
Z =1+ Cy+ ...+ ¢y, such that supp(cy) € By, (r') and supp(dcy,) C By, _, (r)U By, (r). By
our choice of the points v, the balls Byk ,(r) and By, () are disjoint, hence dcj, decomposes
as dci, = by, + bj, with supp(by) C By, () and supp(b ) € By, ,(r). By renumbering

> (b +bp) = Z (b, + by) = Zack dz =0,
k

k

and the terms in the first sum are supported in disjoint sets By, (r), then b, = —0bj.

Each by is an i-cycle with support in B, (), so by Lemma 5.8 there is a filling a; of by
with supp(ay) C By, (R') such that |ag|; < M'|bg;.

The chain z;, := ¢y —ag+ag—; is an (i+1)- cycle since O(cy—ag+ag—1) = Ocy,—bp+bx—1 =
Ocy, — by, — b, = 0, and also

supp(zi) C By, (r') U B, (R') U B, ,(R) C By, (r+ R'),
so again by Lemma 5.8 we can fill z; by an (i + 2)-chain dy with supp(dy) C B,, (R") and
|di|1 < M|z
The chain ap := )", d; is a filling of z since dan = >, 0dr, = >, 2 = D> ¢k = 2, and
supp(aa) € Uy By, (R") € By(R") implies

Yk—1



£5o-COHOMOLOGY AND METABOLICITY OF NEGATIVELY CURVED COMPLEXES. 23

FiGure 7. The base of induction ¢ = 1 and the induction step 1 = 7 + 1
pictured for ¢ = 1.

Bv(2C’2(m — 1)) P

(6) supp(aa) C By (R" +5)

for any geodesic p’ connecting v to a vertex of A. Also

laals < Z |di |1 < M’(Z ekl + QZ lag|1) <
k k k
M’(Z et + 2M’Z lbe]1) < M’(Z lcxl1 + 2M’Z 8cy]1) <
Z|ck|1+2M’AZ|ck| = M'( 1+2M’ Z|c,€|1 =

(7) M'(1 +2M Az < M’(l oM A)ni T,

where n;; is the maximal number of codimension 1 faces for (i+1)-sells A in X. Formulas
(6) and (7) say that aa satisfies the required properties for S;1; := R” + S and T;;; :=
M'(1+2M'A)n;1T;. Lemma 5.9 is proved. O

The last conclusion of Lemma 5.9 says that j gives a bounded retraction to the inclusion
B;(X,R) = Z;(X,R) C C;(X,R). Also this lemma implies that, for any i-cycle z =
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YoABaA in X,
2l =15(2)lr < D 1Bad(A)ly < D 1Ay - |Bal <
A A
S Jaal 185l € TV Y 18a] < T2,
A A
so Theorem 5.4 follows. O

Proof of Theorem 5.5. As before, if X' is the negatively curved finite complex with
fundamental group G, we can take X to be X’. Again, by scaling the metric we can
assume curvature K = —1.

By Theorem 5.4 we only need to exhibit a quasigeodesic R-combing with bounded areas.

In section 2 we defined the Whitney map W : C(X,R) — QY(X,R) for any M-
complex X. A proper way to think about W is as of a map which spreads i-forms from
X to X. Also, the supports of these forms are not spread too far if the simplices of X
are universally bounded. Now we define “the adjoint map” W' : C?™(X,R) — C;(X,R)
from smooth chains to simplicial chains as follows: for s € C:™(X,R) and ¢ € C*(X,R),
W'(s) is determined by < ¢, W'(s) >:=< W(c),s >. Unraveling what this nonsense
means one can see that the simplicial chain W’(c) is defined by (taking ¢ = o, i.e. by
abuse of notation c is the cochain having value 1 on ¢ and 0 everywhere else)

(8) W'(s)(0) :=< W(0),s >= /W(J).

In dimension 0 this just means a discrete sum. One should think of W’ as of a map
projecting smooth i-chains from X to X®.
Let C' be the maximal diameter of simplices in X.

Lemma 5.10. Let X be a My-complex. Then
(a) W' C:™(X,R) — C.(X,R) is a chain map,
(b) supp(W'(s)) lies in the C-neighborhood of supp(s),
(¢) there exists N > 0 such that |W'(s)|y < N - Area(s) for any smooth singular simplex

s, and
(d) for any simplex o in X (thought of both as a smooth and as a simplicial chain),
W'(o) =o0.

Proof. (a) Since W is a chain map, by Lemma 2.6 and Stokes’ theorem we have the
following tautology:

< ¢, W'(9s) >=< W(c),0s >=< dW(c),s >=
< W(dc), s >=< dc, W'(s) >=< ¢, 0W'(s) >
for any cochain ¢, hence W'(0s) = OW'(s), W' is a chain map.
It suffices to show (b) only in the case when s is a smooth simplex contained in a

simplex A of X. Take ¢ = o as before. By the definition of W the support of form
W (o) is contained in Star(o). If supp(s) does not lie entirely in the C-neighborhood of
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supp(o) then supp(s) N Star(o) = (. Formula (8) then implies that W’(s)(c) = 0. Thus
supp(W'(s)) is in the C-neighborhood of supp(s).

(¢) follows from formula (8), where N is the universal bound for the norm of the form
W(o).

(d) Recall that by Lemma 2.7 W is a section of the integration map I. Then we have
(thinking of o as of a cochain)

/W W(o)),0' >=< 0,0’ > .

Then W'(o") = o'. O
For a vertex w, p,, will denote the geodesic in X connecting the basepoint v to w. Then
Dw is & smooth 1-chain. Let g, := W'(p,). By Lemma 5.10(d),

gy = O(W'(pw)) = W' (0py) = W (w —v) = W (w) — W'(v) =w —v.

This says that {g,} is an R-combing on X, It is quasigeodesic from Lemma 5.10(b)
and from the fact that {p,} lies close to a quasigeodesic combing on X ) (because the
inclusion X" < X is a quasiisometry).

As before, for any edge e in X we form a canonical geodesic triangle b, as the con-
catenation of pj(,e, and pyy. Orient b, consistently with e. By Lemma 4.5, b, admits a
smooth filling D, € C5™(X,R) of area bounded by C, so using Lemma 5.10

|Gie) + € = Qe s = IW'(pice)) + We) = W(pye))lr = [W(be)l; =
(W/(OD:)|; = [OW'(De)ly < [W(De)|y < N - Area(D.) < NC,

so the combing {g, } is with bounded areas. Theorem 5.5 is proved. O
Proof of Theorem 5.6. Let M be a closed smooth manifold of negative curvature and X be
the universal cover of M. By scaling the metric we can assume curvature K < —1. The
space X is homeomorphic to H", in particular, X is contractible. X admits a canonical
geodesic combing with bounded areas (see [5, Lemma 12.4]), where “geodesic” and “areas”
are understood in the sense of the Riemannian metric on X. Also, M admits a smooth
triangulation [10, Theorem 10.6], so we can view X as a simplicial complex by lifting the
triangulation of M to X. Now we want to apply the argument we used for complexes in
the proof of Theorem 5.5. The only obstacle to this is that X may not be a Mg-complex
with respect to its triangulation, so the Whitney map W is not defined yet.

We modify the definition of W as follows. {Star(w) | w € M@} is a finite open cover
of M and each Star(w) lifts to M. Pick a smooth partition of unity on M subordinate
to this open cover. It lifts to a partition of unity {1, | w € X@} on X. Define W the
same way we did in section 2 (1) with respect to this partition of unity. Construct a
quasigeodesic R-combing with bounded areas following the proof of Theorem 5.5 word by
word. Theorem 5.6 is proved. O

Actually, the argument above says more. Suppose the hypotheses of Theorem 5.4 are
satisfied. Then there exists a bounded retraction j: C;(X,R) — B;(X,R) for i > 1, and
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a diagram chasing argument implies that H (Zjol) (X, V) =0 for any normed vector space V'
over R. So we have the following strengthening of theorems 5.5 and 5.6.

Theorem 5.11. Let G be the fundamental group of either

(1) a finite negatively curved complez, or
(2) a closed manifold of negative sectional curvature.

Then H(”OO)(G, V) =0 for any n > 2 and any normed vector space V' over R.
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