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ABSTRACT. For any hyperbolic complex X and a € X we con-
struct a visual metric d = d, on X that makes the Isom(X)-action
on 90X bi-Lipschitz, M6bius, symmetric and conformal.

We define a stereographic projection of d, and show that it is
a metric conformally equivalent to d,.

We also introduce a notion of hyperbolic dimension for hyper-
bolic spaces with group actions. Problems related to hyperbolic
dimension are discussed.
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References 31

1. INTRODUCTION.

This paper deals with the notions of conformal structure and con-
formal dimension of metric spaces, most notably ideal boundaries of
hyperbolic spaces. This subject has rich history, and it seems to be
an impossible task to track all its origins and contributions made by
various people. We will give some references, without any hope for a
complete list. The author is very much obliged to those who partici-
pated in the discussion (see the list at the end of this introduction).

In [24], Pansu attached a conformal structure to the ideal boundary
of a manifold of negative curvature. Bourdon [4] described a conformal
structure on the ideal boundary of a CAT(—1) space. These spaces are
defined by comparison to the standard hyperbolic space H" (see [5] for
definitions), and therefore allow for the use of hyperbolic trigonometry.
Considering (quasi)conformal structures at infinity for groups started
with the works of Margulis [19] and Floyd [12]. This area has been
developed quite extensively since. In particular, a metric quasiconfor-
mal structure was known to exist for hyperbolic groups; see Ghys-de
la Harpe [14].

We will work in the category of hyperbolic complexes by which we
mean simplicial complexes whose 1-skeleton is a hyperbolic graph of
uniformly bounded valence. For example, a Cayley graph of a hyper-
bolic group can be viewed as such. The CAT(—1) property is quite
restrictive, for example any CAT(—1) space must be contractible. In
contrast, hyperbolic complexes can be arbitrarily bad locally; they are
much more general and often occur in practice, for example Cayley
graphs of non-free hyperbolic groups do not admit CAT(—1) metrics.
One can also find many higher-dimensional simplicial examples, for
instance various coverings of triangulated manifolds. Another inter-
esting “example” is the connected sum M#K, where M is a closed
hyperbolic 3-manifold and K is a hypothetical counterexample to the
Poincaré conjecture.

The goal of the present paper is to show that the ideal boundaries of
hyperbolic complexes admit metric conformal structures with all the
necessary sharp properties, just as in the CAT(-1) case.

12000 Mathematics Subject Classification: 20F65, 20F67, 20F69, 37F35, 30C35,
54E35, 54E45, 51K99, 54F45.
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The existence of conformal structures is of interest in particular be-
cause of the relation to the Cannon’s conjecture ([6],[8],[9],[7]) that
states that a hyperbolic group I' with 0" homeomorphic to the 2-sphere
admits a proper cocompact action on H?. This conjecture originated
from (but is not immediately implied by) the Thurston’s geometrization
conjecture. In [6] Cannon proved a combinatorial Riemann mapping
theorem, and then using the Sullivan-Tukia results [26], [28], Cannon
and Swenson [9] showed that for a hyperbolic I" the existence of a proper
cocompact I'-action on H? is equivalent to a certain combinatorial con-
formality property for balls in . Bonk and Kleiner ([2], [1], [3]), used
methods of geometric analysis to address the question. They prove
the Cannon’s conjecture under any of the following three assumptions:
when (a) 0G is Ahlfors 2-regular, when (b) OI' is Ahlfors @-regular
and )-Loewner in the sense of Heinonen and Koskela [17] for some
@ > 2, or when (c) the metric on OI' quasisymmetrically equivalent
to an Ahlfors @-regular metric with Ahlfors regular conformal dimen-
sion (). They work with quasi-Mobius maps and quasisymmetries; in
the present paper we show that hyperbolic groups and complexes admit
“dequasified” versions of these notions (Theorem 14 and Definition 11).

Pick a basepoint a € X. The following two ways to define a metric
on the boundary 0X has been known.

(a) For the function u(x) := e~4®% Gromov [15, 7.2.K] and Coor-
naert-Delzant-Papadopoulos [10] deﬁne the p-length of a path in
0X by integrating u along the path, and let the distance between
xz and y in 0X be the infimum of all p-lengths of paths from z
to y in X.

(b) In the second approach, Ghys-de la Harpe [13, §3] use the Gromov
product

(1) @)= 5(da,2) + dla,y) — d,v),  azyeX.

(See also a simple argument left to the reader in [15, 1.8.B].) This
product usually has no continuous extension to the compactifica-
tion X := X U 38X, as simple examples show (see [5], Definition
3.15 and Example 3.16). The construction of the metric is two-
step: for z,y € 0X and € > 0 small enough, one first defines

(2) pa(x, y) = Pa,e(x,y) .= e—e(w|y)a
and then lets

(3) da(xay) - dae :E y lﬂfZPae Ti— laxz



4 IGOR MINEYEV

where the infimum is taken over all chains © = z¢, z1,..., 2, = ¥.
Usually the function p, is not a metric on 0X (see Lemma 7
below), so the second step is necessary.

Recall that a map f : (Z,d) — (7', d') is quasiconformal if there exists
K € [1,00) such that for each z € Z,

. sup{d'(fz, fy) | y € Z and d(z,y) <r}
(4) IH:I_?(:JP inf{d'(fz, fz) | z € Z and d(z,2) > r} sk

(cf. [13, Ch. 7, §4]). Each isometry g of a hyperbolic complex X induces
a homeomorphism of 90X which is Lipschitz and quasiconformal with
respect to d, . defined above ([13, Ch. 7, §4]).

In [22] a metric d was constructed for any hyperbolic group. A

slightly modified version of d, defined on X, was used in [21] to con-
struct a metric on the symmetric join of X with sharp properties. In
particular, d is Isom (X )-invariant. It was also shown in [21] that if one
defines the Gromov product using d instead of the word metric, i.e.

5 (ol 1= 5 (dla,2) + d(a,y) = d(,9)),

then (:|-), extends continuously and therefore canonically to a function
X2 — [0, ).

Suppose (X, d) is a CAT(—1) space. If (+|-), is defined as in (1), Bour-
don showed in [4] that for any € € (0, 1], the formula d,(z, ) := e~ *¥)a
gives a metric on 0X, that is, in the CAT(—1) case the second step
is unnecessary. (5, p.435] says “however one cannot construct visual
metrics on the boundary of arbitrary hyperbolic spaces in such a direct
manner”’. One result of the present paper is that such a direct con-
struction is nevertheless possible for hyperbolic groups and complexes
if one uses d: we define

(6) d(x, y) = da(x, y) = dva,e(.T, y) = e—e(z\y)ﬂ)

where (z|y), is as in (5). We use the convention e~ > = 0. (The results
in [5] are correct; the above quote from [5] is only to emphasize that
the results of the present paper are new.)

Theorem 5. Let X be a hyperbolic complex. There exists €g > 0 such
that for every € € (0, €] and every a € X, the function d defined above
is a metric on 0X.

The metric d on X is therefore obtained from d in one step, just as in
the CAT(—1) case. Note that d is actually well-defined as a function
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on X2, though it is a metric only on X2. We show that d, is Holder
equivalent and quasiconformally equivalent to d, (Theorem 6).

Given a hyperbolic complex X, d was used in [21] to define a con-
tinuous horofunction 8* on the larger space X (the symmetric join of
X). In section 6 we consider its restriction 5 : X x X? — R and give
a simpler proof that it is Lipschitz in each variable (Proposition 10).

We consider strong notions of conformality and symmetry (Defini-
tion 11). An advantage of the definition (6) is that it provides a family
of metrics that is Isom(X)-invariant, Lipschitz, symmetric, and confor-
mal (Theorem 13). The continuity of § is used in proving the confor-
mality of this family.

Define the cross-ratio on X via d, i.e.

v v

! !
) fa, 2]y, y) o= DN DY),
do(,Y') do(2', y)
This expression obviously makes sense for pairwise distinct points z, 2, v, ¢/’
in 0X. It can also be defined in larger domains 8°X or X°, and it is
independent of the choice of a (see (9) and section 5).

Theorem 14 shows that if one puts the metric d, on the ideal bound-
ary of a hyperbolic complex X, then the homomorphism of 0X induced
by g € Isom(X) is M6bius, bi-Lipschitz, symmetric, and conformal.

In the classical case, the boundary of H" is the round sphere S™ !,
and for any b € S™ ! the stereographic projection maps S™ '\ {b}
conformally onto the plane with the standard Euclidean metric. For
a € X and b € X we define the stereographic projection of d, with
respect to b by

v

) _ du(3,y)
(8) dojp(7,y) = dy(z,b) dy(y,b)’

This formula is the same as in elementary Euclidean geometry for the
classical stereographic projection, where the Euclidean metric is re-
placed with d (see section 9). We show that it works for any hyperbolic
complex X and indeed defines a metric:

z,y € 0X \ {b}.

Theorem 16. For any hyperbolic complex X, the function da“, 1S a
metric on 0X \ {b} conformally equivalent to d,. The metrics d, and

dap induce the same (usual) topology on 0X \ {b}.

dq» generalizes the metric defined by Hersonsky-Paulin who used a
different formula in the CAT(—1) case [18, p. 383]. It also strengthens
the quasiconformal metric in [14].
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In section 10 we define a notion of hyperbolic dimension for groups
and spaces. This takes it origins in and is related to the notion of con-
formal dimension; the reader is advised to use the following references
as a guide: Margulis [19], Pansu [24], Gromov [16, 15], Bonk-Kleiner
(2], 1], [3].

Theorem 25 is a rigidity result for hyperbolic complexes: under the
assumption of equivariance, the notions of conformal, symmetric and
Mobius maps on the ideal boundary coincide.

The author would like to thank the hospitality of MSRI, Berkeley,
in the summer of 2002, of Max-Planck-Institut, Bonn in the summer of
2003, and of IAS, Princeton, in the year 2003-04. The author benefited
a lot from discussions with Igor Belegradek, Mario Bonk, Marc Bour-
don, Bill Floyd, Misha Gromov, Vadim Kaimanovich, Ilia Kapovich,
Bruce Kleiner, Gregory Margulis, Kevin Pilgrim, Leonid Potyagailo,
Jeremy Tyson. This project is partially supported by NSF CAREER
grant DMS-0132514.

2. THE METRIC d, ON 0X.

The ideal boundary OH" of the standard hyperbolic space H" is the
round sphere S?. There are two natural metrics on S™ with respect to
a basepoint a € H": the angle metric at a which is the same as the
path metric in S™, or the chordal metric, the one induced from R**!
and expressed as twice the sine of the half-angle. A particular choice
is not important since the two metrics are conformally equivalent. In
this section we prove Theorem 5 which gives an analog of the chordal
metric for any hyperbolic complex X.

2.1. Definition of d. For completeness we remind the definition of
the metric d on a hyperbolic complex X. See [20] for the properties of
f and f defined below, and [22, sections 3 and 5] and [21, 6.1] for more
details on the metric d.

Let G be the 1-skeleton of X. We endow G with the word metric d,
i.e. the path metric obtained by assigning each edge length 1. Let § be
a positive integer such that all the geodesic triangles in G are J-fine.

The ball B(z, R) is the set of all vertices at distance at most R from
the vertex z. The sphere S(x, R) is the set of all vertices at distance R
from the vertex x. Pick a geodesic bicombing p in G; that is a choice
of a geodesic edge path p[a, b] for each pair of vertices a,b in G. By
pla, b](t) we denote the point on the geodesic path p|a, b] at distance ¢
from a. C;(G, Q) is the space of all i-chains in G with coefficients in Q.
Endow Cy(G, Q) with the ¢'-norm | - |; with respect to the standard
basis G,
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For v,w € G, the flower at w with respect to v is defined to be
Fl(v,w) = S(v,d(v,w)) N B(w, ) € GO

Let Geod(a, b) be the finite set of all geodesic paths in G from a to b.
View each geodesic as a 1-chain and define

p [a b] m Z S € Cl(ga Q)a

s€Geod(a,b)

1
'[a,b](t) == ——r t) € Cy(G,Q).
Ve l) = g Y s <GlO.Q
s€Geod(a,b)
Define pr, : G — Cy(G, Q) by
o pry(a) = q;
o if b # a, pro(b) := p'[a,b](t), where t is the largest integral
multiple of 106 which is strictly less than d(a, b).
This extends by linearity to a Q-linear map pr, : Co(G,Q) — Co(G, Q).
Now for each pair a,b € G0, define a 0-chain f(a, b) in G inductively
on the distance d(a, b) as follows:
e if d(a,b) < 106, f(a,b) := b;
e if d(a,b) > 104 and d(a, b) is not an integral multiple of 104, let

f(a,b) := f(a,pra(b));
e if d(a,b) > 106 and d(a, b) is an integral multiple of 100, let

fla,b) = #Fl EFXZ‘; fla,pro(x

where f(a,prq(z)) is defined by linearity in the second variable.

In what follows we will interchange a and b in the notation.

p[b, a] / 108
\

FIGURE 1. Convex combination f(b,a).
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For each a € G, a 0-chain star(a) is defined by

1
star(a) := #5079 Z

z.
z€B(a,79)
This extends to a linear operator star : Co(G,Q) — Co(G, Q). Define
the 0-chain f(b,a) by f(b,a) := star(f(b, a)).
For each pair of vertices a,b € G, a rational number 7(a,b) > 0 is
defined inductively on d(a,b) as follows.
e 7(a,a) :=0.
o If 0 < d(a,b) <106, let r(a,b) := 1. )
e If d(a,b) > 106, let (a, b) := r(a, f(b,a))+1, where r(a, f(b, a))
is defined by linearity in the second variable.
The function r is well defined by [20, Proposition 7(2)].
For all a,b € GO, let

s(a,0) = 5 [r(a,8) + (b, 0)]
and
A . s(a,b)-i—C if a # b,
d(a, b) '_{ 0 if a = b,

where C' is a sufficiently large constant depending only on X. d is an
Isom(X )-invariant metric on G(® = X and it extends to X by lin-
earity over simplices. Tt is shown in [22] and [21] that d is an Isom(X)-
invariant metric on X quasiisometric to the word metric.

2.2. The double difference (-, -|-,-). This notion was first considered
by Otal [23] for negatively curved manifolds, under the name “symplec-

tic cross-ratio”. Since in this paper we consider two metrics d and d,
and one is obtained by exponentiating the other, it is important to
clearly distinguish between sums and products. We will therefore con-
sistently call differences differences and ratios ratios in what follows.

Let (a,d’,b,b') € X*. A 0X-triple in (a,d’,b,b') is a set of three
distinct letters taken from a,a’, b, b’ in which each letter represents a
point in 0X C X. A 0X-triple is trivial if the three letters represent
the same point in 0.X. Denote

(9) X° :=
{(a,d,b,b') € X* | each 0X-triple in (a,d’, b,b") is non-trivial},
0°X =
{(a,d’,b,¥) € (0X)* ‘ each 9X-triple in (a,d’,b,b') is non-trivial }.
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We have X* C X° C X* with the topology on X° induced by the last
inclusion; similarly for 9°X C (0X)*.
R := [~o0, oc] is the two-point compactification of R. Let d be the

metric on X defined above. The double difference in X is the function
{(-,*]",-) : X* = R defined by

(10)  (a,d|b, ) = %(d(a, b) — d(d',b) — d(a,¥) + d(d 1)).

One might call it the d-double difference to emphasize the metric used
in its definition. In addition we define the double difference (-,-|-,-) :
(X©)* — R with respect to the word metric d on X©:

(1) (a,d|b V) = %(d(a, b) — d(d',b) — d(a,b) + d(d", ).

Extend (-, |-,-) to all of X* by linearity over simplices. One can further
extend (-,-|-,-) to X° by taking limits along some sequences of points
in X(©: such an extension usually depends on the choice of sequences
and is neither unique nor continuous.

The following was shown in [21].

Theorem 1 ([21, 6.7]). If X is a hyperbolic complex, the double dif-
ference (-,-|-,-) : X* — R with respect to d defined in (10) extends to
a continuous Isom(X)-invariant function (-,-|-,-) : X° — R with the
following properties.

(a) {a,d'|b,b) = (b, V|a,d).

(b) {(a,d'|b,b') = — (d',alb, b’y = — (a,d|V, b).

(c) (a,alb,b') =0, (a,a'|b,b) = 0.

(d) (a,d'|b,b') + (d',a"|b,b') = (a,a"|b,b'), where by convention we
allow 00 F oo = r and oo +1r = +oo for any r € R, and
+o0 + 0o = +o0.

) {a,blc,z) + (b, cla, x) + (¢, alb, x) = 0 with the same convention.

) {a,d'|b,b'y = o0 if and only ifa =0 € 0X ord =b€ 0X.

) {(a,d'|b,b'y = —oc0 if and only ifa=b€ 0X ord =1V € 0X.

) For every hyperbolic complex X, the functions (-,-|-,-) and (-, -|-,-)
on X° are **equivalent, i.e. there exist A € [1,00) and B €
[0, 00) depending only on X such that for all (a,d’,b,b') € X°,

(e
(f

(g
(h

1
1 (a,d'|b,b') — B < {a,d|b,b") < A(a,d'|b,t') + B.

Note also that by the triangle inequality, | (a, a/|b, 0’} | < d(a, a').

Proposition 2 ([21, 6.8]). For each hyperbolic complex X there exist
constants T € [0,00) and X\ € [0,1) such that for all (u,a,b,c) € X°, if
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(u,alb,c) > T or {u,bla,c) > T, then
(u, cla, b)| < X9 <1 and  |(u,cla,b)| < A@bla) <1,

2.3. The product (-|-),. Let d be the word metric on X® and define
the product (:|-), as in (1). One can extend (-|-), to the case when
some of z,y lie in X by taking limits along some sequences of points
in X(©. Such an extension in general is neither unique nor continuous.

For a € X we define another function (-|-), : X* — [0,00) as in (5)
and let

X :={(z,y,a) € X* |a€0X — (r#aandy#a)}

We have X® C X” C X3. Since (z]y), = (z,a|a,y), the following is a
corollary of Theorem 1.

Theorem 3 ([21, 5.7]). If X is a hyperbolic complez, the Gromov

product (z|y), with respect to d given by (5) extends to a continuous
function (-|-). : X* — [0,00] such that (z|y), = oo iff a € 0X or
r=y € oX.

For a fixed a € X the above theorem implies that the product extends
to a well-defined continuous function (-|-), : X2 — [0, c].

Proposition 4. For every hyperbolic complez X, the products (). and
(:|"). defined in (1) and (5) are **equivalent as functions on X", i.e.
there are constants A € [1,00) and B € [0,00) such that
1
A
for all (z,y,a) € X".

(@ly)a = B < (aly), < A(z]y)a + B

Proof. This follows from Theorem 1(h) since (z|y), = (z,ala,y) and
(z]y), = (2, ala,y). O

3. THE METRIC d,.
For € > 0 and a € X, define as in (6) the function
d = da X x X — [(), 1] by da(x, y) = e—e(z\y)a‘

Note that d is defined on pairs of points in X, not just in X, but d is
not a metric on X since d(z,z) > 0 for z € X.

Theorem 5. Let X be a hyperbolic complex. There exists €g > 0 such
that for every € € (0, €] and every a € X, the function d defined above
is a metric on 0X.
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Proof. Our assumption is that a € X. Let A € [0,1) and T € [0, o)
be the constants from Proposition 2. Increasing A and 7' if needed, we
can assume that A € [e !, 1). Choose ¢ > 0 small enough so that

(12) T <In2, A <In2 and ¢ <-In\.
Pick any € € (0, €], then by the above choice of A and €5 we have
(13)  2e7>1, 2 >1 and e >A>el.

First we will show the triangle inequality
(14) e c@Wa 4 gmelulz)a > pmelal2)

for arbitrary z, y,z € X (not just in 0X). Since by Theorem 3, (:|-), is
continuous in X2, and X is dense in X, it suffices to prove the inequality
when z,y, 2z € X. In this case all the terms involved are finite, and by
the definitions (5) and (10) of (-|-). and (-, -|-,-) in X, (14) is equivalent
to each of the following:

e (ewla—(@l2)a) 4 o~ e(Wlz)a—{al2)a) > 1,
(15) e_€<aaw‘yzz) + e_e(azzk’/aw) Z 1.

Denote s := {a, x|y, z) and ¢ := (a, 2|y, ). Note that e~ is decreasing
and e " is increasing in s; this observation will be used in the following
four cases.

Case 1. s<T andt<T.

By (13) we have e 4+ e > e™T + e = 2¢~ > 1, which
proves (15).

Case 2. s>T andt>T.

By Proposition 2, s > T implies ¢ < [t| < A5, and ¢ > T implies
s < |s| < A, therefore by (13),

_ _ ot Y _ T _ T _ T
ees+eetZeeA+eeA Zee)\ +ee)\ :266)\ 21

(Alternatively, assume that 77 > 1 and deduce from the inequalities
that Case 2 is impossible.)

Case 3. s>T andt<T.

The assumptions imply that s > 0. Note that f(v) == v+e¥ > 1
for all v > 0 because f(0) =1 and f is increasing. By Proposition 2,
s > T implies ¢t < [t| < A*, therefore by (13),

e—es + e—et 2 e—es + e—e/\“’ — (e—e)s + (e—e))\“’
SX 4+ (e =X 4+eM > 1

Case 4. s<T andt>T.
This is the same as Case 3 with s and ¢ interchanged.
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This shows the triangle inequality for d in X (not just in dX). Our
assumption is that a € X, so for z,y € 0X, Theorem 3 implies that
d(z,y) = 0< z =y, hence d is a metric on 0X. O

4. COMPARING TO THE CASE OF WORD METRICS.

In this section we compare the metric d with the one coming from the
word metric. The following theorem can be deduced from the general
argument as in [4] (one would only need to modify the definition of
quasiconformality), since d and the word metric are quasiisometric (as
shown in [22] and [21]). Below we also provide a short direct proof that
is based on properties of d.

Theorem 6. There exists € > 0 such that for every e, € € (0,€] and
a,a’ € X , the following hold.

(a) dae in (6) and dg ¢ in (3) are Hélder equivalent. In particular,
d induces the usual topology on dX and (0X, d) 1s of finite
Hausdorff dimension.

(b) Ja,e is quasiconformally equivalent to dy ¢, i.e. the identity
maps (0X, da,g) S (0X, cza:,g) are quasiconformal. Moreover,
there exists K = K(X,¢€,a,€,a') < oo such that for any x €
0X,

(16)  sup sup{da.c(z,y) | y € 0X and dy o (z,y) <1} <K
re(000) inf{d, ((7,2) | 2 € 0X and dy o(x,2) > r}
and

. sup{dy «(2,y) | y € 0X and do(z,y) <71}
re(0,00) INf{dy ¢ (z,2) | 2 € 0X and dy(z,2) > 1} —

Proof. (a) It is shown in [13, Ch. 7, §3] that the metric dy  in (3) and
the function py ¢ in (2) are Lipschitz equivalent with a constant C' =
C(X,d,€) > 0, and that (0X,dy ¢) has finite Hausdorff dimension.
Changing the basepoint a to a' gives Lipschitz equivalent metrics, so
we will assume a = o/. Holder equivalence of cza,e in (6) and pge
follows from Proposition 4. This implies that d, ¢ and Ja,e are Holder
equivalent. Thus d defines the same topology on X as the metric
in (3), and (90X, d) has finite Hausdorff dimension.

(b) Choose € > 0 so that for all ¢, ¢ € (0, €] and a,a’ € X©, d,
and d, ¢ are metrics on 0X. To show (16), pick any r € (0,00) and
z,y,z € 0X satisfying dy ¢ (z,y) < r and dy o (z,2) > 7. As described
in (a) above, dy ¢ and py ¢ are C-Lipschitz equivalent, hence

Pa’ ¢ (.T, y) <Cr, Pa’ (.T, Z) > T/C’

(17)
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Since (z[2), — (zly), = (a,z|z,9) and (z|2), — (z[y), = (¢, 2|z, y), by
Theorem 1(h),

(z]2), — (zly), < A((2]2), — (2]y),) + B <
A((2]2) = (2ly) ) +24d(a,0) + B,
where A and B depend only on X. Hence

e(z|z), —e(z]y), < ﬁ(e' (z|2), — € (x\y)a) +2eAd(a,d’) + €B,
€

~ A !
C%a,e (1‘7 y) < <pa’ € (.CE, y) ) “Afe . e2eA d(a,a’)+eB
da,e(ﬂ'), Z) o Pa’ ¢ (.T, Z)

< C2eA/e’626A d(a,a’)—l—eB'

Setting K to be the right hand side, this implies (16). (17) is proved
similarly, with C' = 1. U

From now on we will always assume that ¢ > 0 is chosen so that it
satisfies (13).

Recall that for Ja to be visual means that for each b € X there exist
constants C' > 0 and € > 0 such that

(18) ée—smw)b < dy(z,y) < Ce—ci.

for all z,y € 0X, a € X. When one takes b = a and (:|-), instead of
(:|)a, then d, becomes “the most visual possible”, that is (18) holds
with C =1, ¢ = € and equalities on both sides, as follows from the def-
inition (6). Now the triangle inequality and Proposition 4 imply (18),
i.e. d is visual with respect to (:|-). as well.

The following lemma says that if one starts with the word metric on
X, a metric on 0X cannot be defined in one step.

Lemma 7. Suppose G is a hyperbolic graph, d is the word metric on
G, and 0G is not totally disconnected. Then p defined by (2) is not a
metric on 0G inducing the usual topology.

The fundamental groups of closed hyperbolic n-manifolds for n > 2,
and more generally, their free products, satisfy the assumptions of the
lemma, giving examples when p is not a metric.

Proof. If d is the word metric, the Gromov product (1) takes only
values of type k/2, where k € Z. Assume that p is a metric inducing
the topology of 0G. If 0G is not totally disconnected, then there exist
distinct points x and y in a connected component C' of 0G. The image of
C under the continuous map z — p(x, z) must contain p(x,z) = 0 and
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p(x,y), and therefore the whole interval [0, p(x,y)]. This contradicts
the fact that p can take only values of type e~/ k € Z. U

5. THE CROSS-RATIO IN X.

Let the cross-ratio on X be the function
19) b X o000, [aly,y] = @,

with the convention e = (0 and e® = oo. Here we take the same

€ as in the definition of d, in section 3. We will see (Proposition 9)
that this definition extends (7) to the larger domain X°. Tt is also
clear from (19) that the cross-ratio does not depend on the choice of
basepoint a.

The following is “eTheorem 17

Theorem 8. The cross-ratio [-,-|-,-] : X® — [0,00] in (19) is a well-
defined continuous Isom(X)-invariant function satisfying the following
properties.

(a) [a,d'|b,b] = [b,b']a,a'].

(b) la,a'b, '] =1/[d’, alb,b'] = 1/[a, a'|V', b].
(c) [a,alb,t'] =1, [a,a’[b,b] =1.
(d)

[a,d'[b, 0] - [d,a"|b,b'] = [a,a"|b,], where by convention we
allow oo -0 =71 and 0o -1 = 00 for any r € [0,00], and 0000 =
00

(e) [a,b|c,z] - [b,cla,z] - ¢, alb, z] = 1 with the same convention.
(f) [a,d'|b,b'] = oo if and only if a =¥ € 0X ora' =b € 0X;
(g) [a,d'|b,t] =0 if and only if a =b € 0X ora =10 € 0X.

Proposition 9. Suppose a € X and (z,2',y,y') € X°. Then

v v

sa'lyy) _ Ga(:y) da(z’,
[z, 2|y, ] = e 0¥} = V( ) da )

do(,y') (2, y)’
i.e. the two definitions of cross-ratio [-,-|-,-] in (7) and (19) agree.

Proof. Both sides of the equality are continuous wherever defined, and
X* is dense in X°, hence it suffices to show the equality only for
(z,2',y,y") € X*. In this case by direct calculation we have

<$, xl|ya yl> = (CC, y>a - <$, yl>a - <xla y>a + <.Z", y’>a -
This and the definition of d, imply the desired equality. O
If a’,b,b' € X do not all coincide and a € X, we have

(0 W
(20) [a,d'|b,b] = e~ <@ Ph+e@b) — M.
da(ala b)

Similar formulas are obtained by permuting variables.



METRIC CONFORMAL STRUCTURES AND HYPERBOLIC DIMENSION 15

6. HOROFUNCTIONS.

A

Define Bu(x,y) =d(u,z) — cZ(u,y) for (u,z,y) € X3 and
Bu(x,y) :=lim By(z,y) as v — u along X

for (u,z,y) € 0X x X?. This limit indeed exists in R, because by the
continuity and properties of the double difference in X° (Theorem 1),
for an arbitrary vy € X,

(2]‘) lim ﬁv z y = lim (d ( UO; UO; ) + <U0: U“"E’y>)
= d(vo, ) — d(vg y) + lim (vg, v|z, y)
= d(’l)o,.’L‘) - d(U07 y) + <UOa U/|.7/',y> € Ra
where all the limits are taken as v — u along X, not just along X.
The function § : X x X 2 — R defined above is called the horofunction
in X. The continuity of the double difference and (21) imply that £ is
continuous in the three variables. This horofunction 3 is the restriction

of the continuous function $* that was defined in [21, 8.1] on a larger
domain X x (#X)%

Proposition 10. Put metrics d on X and d = d, on 0X with respect
to a fired basepoint a € X. The functionB : 0X x X% — R is Lipschitz
in each variable. Moreover, this is true in the domain X x X? (in the
obvious sense, even though d is not a metric in X ).

Proof. Let T € [0,00) and A € [0,1) be as in Proposition 2 and recall
that by our choice of € in (12) and (13), A < e €. Fix 2,y € X and let

C:= max{/\_‘i(“’x)_‘i(“’y), cZ(m, y))\—T—ﬁ(a,w)—J(a,y)}_
Pick arbitrary u,u’ € 0X. If (u,z|y,u’) > T then by Proposition 2,
| <’LL, ’LL’|.’I,‘, y> ‘ < )\(u,zc|y,u') — /\(u,a|a,u')+(a,w|a,u’)+(u,z\a,y)

< Nul)o—dlaw)—day) < O\, < Cemelult)

= Cd(u,u').
If (u,z|y,u’y < T then
u, |z, y) | < d(z,y) < ( y) Al =T
< d(z, ) A W)emden)-den)-T < cyi),
< Ce~ e = Cd(u, u).
Hence

|5u(xay) - Bu’(xay” = | (u,u'|x,y> | < CCZ(’U,,’U,I)
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for all u,u',a,z,y € X. By ‘continuity this extends to the case when
u,u' € X. ThlS means that 3, (z,y) is Lipschitz in .
By the triangle inequality,

|Bul@,y) = Bul',y)| = |d(u, 2) — d(u,z")| < d(, ")
holds for u,z,z’,y € X, and by continuity extends to the case when

u € X. This means that 5, (z,y) is Lipschitz in 2. The argument for
y is similar. ]

7. CONFORMALITY AND SYMMETRY.

We will use the following strong definitions of conformality and sym-
metry.

Definition 11. A map f : (Z,d) — (Z',d') between two metric spaces
15 called metric conformal, or just conformal, at a point r € X if the

limit ( )
& (f(2), f ()
lim——————"2% as y—x along Z\{zx
d(a,y) Mo
exists in (0,00). The above limit, denoted |f'(x)|, will be called the
metric derivative of f at x. The map f is conformal in Z if it is
conformal at every x € Z.

A map f:(Z,d) — (Z',d) is symmetric at x € Z if

(/@) /W) dlz 2

&' (f(x), f(2)) d(z,y)

exists and equals 1. The map [ is symmetric in Z, or is a Symmetry
i Z, if it ws symmetric at every x € Z.

as y,z—x along Z\ {z}

f
f

Remark 1. The above notion of conformality was considered by Bour-
don in [4] (and applied to boundaries of CAT(-1)-spaces). The above
notion of symmetry is our “dequasified” version of the notion of qua-
sisymmetry introduced by Tukia and Vaisila ([30]). Note that being
conformal or symmetric are local properties.
Remark 2. The above definition of conformality can be strengthened
by requiring that |f'(x)| be a continuous function of x. The class of
such homeomorphisms f would become a metric analog of the class C*
for functions on manifolds. Theorem 14(d) below says that the home-
omorphism of the ideal boundary of a hyperbolic complex X induced
by an isometry of X is in this class.

We also remark on abstract nonsense. It is a part of the definition
& ((2).1()) d(z.2)
@ (#(2),(2)) dew)

of symmetry that the ratio , and therefore each of the
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four distances, is a number in (0, c0) for all y, z in some neighborhood
of xz. When z is isolated in Z, then, if one traces the definition of lim
formally, any number is a limit. In this case “lim exists in (0, 00)”
should be interpreted as “there is a number in (0, 00) which is a limit”,
and “lim exists and equals 1”7 as “1 is a limit”.

The following is immediate from definitions.

Lemma 12. Conformal maps are symmetries. Compositions of confor-
mal maps are conformal. Compositions of symmetries are symmetries.
Inverses of conformal maps are conformal. Inverses of symmetries are
symmetries.

Two metrics d and d' on a topological space Z are called conformally
equivalent if the identity map (Z,d) — (Z,d’) (and hence its inverse)
is conformal.

8. PROPERTIES OF d,,.

This section shows that the metric d on the boundary of a hyperbolic
complex satisfies the same properties as the metric on the boundary of
a CAT(-1) space (item (d) in the two theorems below is similar to [4,
Corollaire 2.6.3]).

Theorem 13. Let X be a hyperbolic complex. For a fized €, the family
of functions {d,|a € X} on X? defined in (6) is

(a) Isom(X)-invariant in the sense that dga (g2, gy) = da(z,y) for
all g € Isom(X) and z,y € X,

(b) Lipschitz, moreover, do(z,y) < eX®Vdy(z,y) for all z,y € X
and a,b € X,

(c) symmetric, i.e. for all a,b € X, the identity map (0X,d,) —
(0X,dy) is symmetric, and

(d) conformal, i.e. for all a,b € X, d, and dy are conformally
equivalent as functions in X2. Moreover, for each xz € X, the
limst

limM as y —z along X\ {z}

da(,y)
equals ePr@b) ¢ (0, 00).

Proof. (a) The double difference (a,ad’|b,t’) is Isom(X)-invariant by
Theorem 1, therefore so is the product (z|y), = (, a|a,y). This implies
the statement.
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(b) By the continuity of {-|-). (Theorem 3) it suffices to show the in-
equality for z,y € X. In this case by the triangle inequality for d,

(aly)a = (o) (e, ) d(b, )+ d(a, ) ~d(b,9)) < (), +a,D),

which implies d,(x,y) < e‘i(“’b)db(x, ).
(c) follows from (d) below.
(d) Fix any a,b € X, then for all z,y € X we have

(aly)a — aly), = 5 (d(z,a) — d(z,b) + d(y,a) —

1, R
= 5(595((1, b) + By(a, b))
and by the triangle inequality,
1By(a,b)| < d(a,b) < oo.

By the continuity of 3 and (--). all the above hold for z,y € X. Now
fix any z € X, then as y — z along X \ {z},

i (ol — {elod, ) = lim 5 (Belo,b) + By 0,0)) = Bula, ),

and therefore by the definition of d,

A

(y,0))

d .
22)  1im 2BY) i el 2 oBead) ¢ (0 00),

do(z,y)
0

Theorem 14. Let X be a hyperbolic complex. Put the metric d = d,
defined in (6) on 0X. Then for any g € Isom(X), the homeomorphism
induced by g on (0X, J) is
(a) Mdobius, i.e. [g9x,92'|gy, gy'] = [z, 2'|y,y] for all
(z,2',y,y') € 0X° (see (9)), where the cross-ratio is defined in

terms of d, )
(b) bi-Lipschitz with constant e®97' )
(c) symmetric, and
(d) conformal, moreover, for all x € X, the derivative

v

g (z)] :zlimw as y—x along X\ {r}

d(z,y)

equals ¢P=(®97'9) € (0, 00).
(e) Furthermore, for all x,y € 0X,

19' ()] 1g'(y)| d(z,y)? = d(gz, gy)*-
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Proof. (a) The cross-ratio [-, |-, -] is Isom(X)-invariant by Theorem 8.
(b) follows from Theorem 13(ab):

da(92, 9y) = dy-1a(z,y) < 1 Vd, (2, y).
(c) follows from (d) below. )
(d) Take g € Isom(X), a € X, x € X. By Theorem 13(ad), as y — =
along X \ {z},

dq ) . dg-14 ) 3 -
lim 9209%:9Y) _ i, doal@Y) _ hatea) ¢ (g o0).

da(z,7) Cza(xa y)
(e) If x = y the statement is obvious, so we assume otherwise.
“r/ — x” will mean “z’ — x along 0X \ {z}”, and similarly for ¢’ — y.
By direct calculation,

—2¢(aly)
€ C _ pelaale y)—elaylay)

R

for all z,2',y,y" € X, and therefore by continuity this holds for all
xz,z’,y,y € 0X with x # y.

1g'(x)|19'(v)| d(z, y)?
d(gz, gy)?

! ! —2€(z|y),
lim d(g(x), g(z")) lim d(g(y),9(y")) e
dor d(z,a) vy dy,y) e 2e@@)sb),
(e—e’(g(w)lg(w'»a e—€9WlaW))e  o—2e(zly), )

e—€zlz’), e—€WlY)a  e—2€¢{9(z")|9(y')),

ee(a,a:|a:’,y)—e(a,y\z,y’)

= lim
z! —, y’—)y €€<g(a) ,z\z’ ’y>_€(g(a)7y‘wayl)

=  lim efle9(@)le’y)—elagla)lzy’) — 1
o' =z, Y=y

0

Definition 15. Given a hyperbolic space X with an isometric I'-action,
a conformal structure for (X,T') is an invariant conformal family of
metrics on 0X, i.e. a family {d, | a € X} such that
(1) czga(ga:,gy) = cza(a:,y) forgeTl,ae X, x,y € 0X, and
(2) for all a,b € X, d, and dy are conformally equivalent in the
sense of section 7.

The above theorems say that for any hyperbolic complex X,
(X, Isom(X)) admits a conformal structure.
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9. STEREOGRAPHIC PROJECTION: THE METRIC d,; ON 90X \ {b}.

9.1. The standard stereographic projection. Consider the sphere
S™ of radius 1/2 centered at (0,...,0,1/2) € R*""'. Let dg be the
Euclidean metric on R**!. The chordal metric on S™ is the restriction
of di to S™, also denoted dg. Let d’;, be the metric induced on S™\ {b}
from the hyperplane R® C R"*! via the inverse stereographic projection
R" — S™ with respect to b:= (0,...,0,1) € S™

FIGURE 2. The standard stereographic projection.

First we will do a simple exercise in Euclidean geometry. Let z’, 1/

be the respective stereographic projections of x,y (see Fig. 2). By the
similarity of triangles obz and x'bo,

(23) dE(f,b) _ dE(;’b), ie. dg(z,b)dr(z',b) = 1.
Similarly, dg(y, b) dg(y',b) = 1, hence
de(y',b)  dg(a',b)
dg(z,b)  dp(y,b)’
Then triangles bxy and by'x’' are similar so
de(y',b) _ dg(x',b) _ dg(2',y")
de(z,0)  de(y,b)  de(z,y)’

and using (23),

roon dE('T’y) dE(ylab) _ dE(xvy)
di(7'.y) = d(z,b) = du(z,b) dp(y, b)

The projected metric df on S™ was defined by d%(z,y) := dg(2',y'),
which is equivalent to

24)  dp(z,y) =

for z,y € S™\ {b}.
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9.2. Stereographic projection for hyperbolic complexes. Let X
be a hyperbolic complex. For a € X, the metric d, on dX from sec-
tion 3 will play the role of chordal metric.

Let b € X and a € X. In analogy with (24) we define a function

dajp + (X U (9X \ {b}))* = [0,00) by

(25) il 1=

Note that we consider a larger domain than in (8). One checks that the
denominator never takes value 0 in this domain. We will say that d

is the stereographic projection of d, with respect to b. Also, cza‘b(x, Y)
is a continuous function of four variables in the domain

{(a,b,7,y) |a€ X, be X, z,ye XU (0X \ {b})}.
Now restrict dgj, to (0X \ {b})2.

Theorem 16. For any hyperbolic complex X, the function cZa“, s a
metric on 0X \ {b} conformally equivalent to d,. The metrics d, and
dap induce the same (usual) topology on 0X \ {b}.

Proof. x and y will always represent arbitrary points in 0X \ {b}. As-
sume first that b € X. By (25) and (6),

. e_€<z|y)a
da\b(x’ y) = e—€blz), o—edly),

_ o5 (dea)+day)—dew) +5 (dep)+dem)-db.m) + (dab)+day)+iby)
(26) — 6ed(a,b) 6—e(z\y)b — 6ed(a,b) db(x’ y)
Since ed(@) is positive number, the triangle inequality for db and (26)
imply the triangle inequality for da‘b Then by continuity da|b satisfies
the triangle inequality when b € X (in the domain 0X \ {b}). It is
obvious from (25) that dup(7,y) = 0 if and only if z = y, so dg is a
metric.

Now we show conformal equivalence. Assume first that b € X.
By (26) and Theorem 3,

do(z,y) el
e“(@b)atWibla) e (0, 00)

7 ed a,b) ,—€e(x R
d?‘b(x,y) efd(a,b) o—€(zly), — eeld(@b)+{aly),~(aly)y)
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and by continuity this extends to the case when b € X and z,y €
0X \ {b}. Then as y — z along 0X \ {z},

im 9o (T2 Y) ol i) _ g2ealt), ¢ (0, 00).

do(,y)
d, and d,p induce the same topology on X \ {b} because by the
definition of da“, they are bi-Lipschitz equivalent away from any open
d,-ball centered at b. O

A horosphere in X centered at u is the equivalence class in X where

T~y & Bu(z,y) = 0.
We will understand horospheres in generalized sense: u will be a point

in X, not necessarily in 0X. For u € X, a horosphere centered at u is
a usual metric sphere with respect to d.

Lemma 17. Let b € X and a,a’ € X, then

v v

da|b($; y) = GEﬂb(a’a’)da’\b(xa y).

In particular, if a_and o' belong to the same horosphere in X centered
at b, then da\b = da’|b-

Proof. If b € X, by direct calculation as in (26),

da‘b(x’ y) — ech(a,b)efe(ﬂy)b — ee(dA(a,b)fdA(a’,b))ech(a',b)efe(;c\y)b

— GEBb(a’a’)da’|b(xa y).
This extends by continuity to b € X. O

Remark. For a CAT(-1) space X and b € 0X, Hersonsky and Paulin
described a metric dy3 [18]. Lemma 17 shows that d,p is a gener-
alization of dy to arbitrary hyperbolic complexes, where H is the
horosphere at b containing a. Also, da‘,, improves the quasiconformal
metric of [14, Ch.7, Prop.14].

The following is a description of the cross-ratio on 0.X in terms of da| b

Proposition 18. Ifa € X, (z,2',y,y') € X°, and
be XU (OX \ {z,2',y,y'}), then

! n __ da|b($7y) da\b(x,ayl)
[z, 2"y, 4] = < .
da|b(x7y) da|b(m 7y)
In particular, the inclusion map (0X \ {b},dss) — (0X,d,) preserves
cT08s-ratio.
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Proof. First suppose that b € X. As in (26) wee obtain d,p(z,y) =
e‘Ueb) dy(x,y). This and Proposition 9 imply the required equality,
which extends by continuity to the case b € 90X \ {z,2',y,v'}. O

10. HYPERBOLIC DIMENSION.

In this section we define a notion of hyperbolic dimension for groups
and spaces. This takes it origins in and is related to the notion of con-
formal dimension; the reader is advised to use the following references
as a guide: Margulis [19], Pansu [24], Gromov [16, 15], Bonk-Kleiner

(2], [1], [3].

10.1. Hyperbolic spaces. Given a number C € [0, 00) and a metric
space (X, d), a C*geodesic in X is a (not necessarily continuous) map
v :10,T] — X such that |d(y(s),y(t)) —|s—t|| < C for all 5,¢ € [0, 7.
A metric space X is called *geodesic if there is C' € [0,00) such that
every two points in X can be connected by a C*geodesic.

We will work in the category of Tgeodesic metric spaces. The notion
of hyperbolicity can be defined for Tgeodesic metric spaces, for example
using *geodesic thin triangles. In what follows, hyperbolic spaces can
be just as well assumed to be hyperbolic in the above generalized sense.
A metric space X is proper if closed balls in X are compact.

10.2. Two classes of metrics M and M. Suppose (X, d) is a proper
hyperbolic space and d is another metric on X. Let (-|-). be the Gromov
product defined by d and denote

E;:={e€ (0,00) | Va € X e 1a restricted to (0X)? is a metric},

o sup E; if E; # 0,
70 if B;=0.

For a € X and € € (0, 00) define a function ;¢(d) : X2 — [0,1] by
(27) aeld)(,y) = We gy € X,

where again (-|-). is defined by d.

Now additionally assume that (X, d) is given an isometric action by
a group I'. Denote M(X,T) the set of all metrics d on X satisfying the
following.

(a) d is quasiisometric to d.
(b) d is I'-invariant.

A,

(c) (X,d) is *geodesic.
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(d) The d-double difference {-,-|-,-) on X* extends to a continuous
function X° — [—00, 00]. In particular, for all € € (0, 00), 4(d)
extends to a continuous function ,(d) : X2 — [0, 1].

(e) 1 € Ey, ie. e ¢1a is a metric on 0X for all a € X.

Using Theorem 5 and rescaling d if needed to guarantee (e), we see
that 1\7I(X ,I') is non-empty when X is a hyperbolic complex and T is
a group of its isometries. Further denote M(X) := M(X,1); this is the
corresponding class of metrics with no equivariance requirement.

The second class of metrics is on the ideal boundary of X.

Mo (X,T) := {,(d) | d € M(X,T), e € E;},
M(X,T) := | Mo (X,T),

a€X

My (X) :=M,y(X,1),  M(X):=M(X,1).
M(X) consists of metrics on 0X.

Lemma 19. Ifd € M(X), a € X and € € (0,00), then ,(d) induces
the usual topology on 0X.

The proof is the same as for geodesic metric spaces (see for example

[14, Ch.7, Prop.14]). For the statement to hold, ,(d) does not need to
be a metric; only conditions (a), (c) and (d) suffice.

10.3. The definition of hyperbolic dimension. Hdim will stand
for Hausdorff dimension. Given a proper hyperbolic metric space X
with a I'-action, the hyperbolic dimension of (X,I') is the quantity

A(X,T) :=inf{Hdim(0X,,(d) | d € M(X,T), a € X, e € E;}
= inf{Hdim(0X,d) | d € M(X,I')}.
For a hyperbolic group I', the hyperbolic dimension of I is
A(T) = A(T,T),

where [ is viewed as a hyperbolic metric space with the left ['-action.
We set by definition Hdim (@) := —1, so A(I") = —1 for finite groups.

Remark. The above definition allows for generalizations. One could
work with pseudometrics instead of metrics both in X and in 0X. The
[-action on X can be also replaced with a tTisometric action, or with
an isometric Taction, which are the corresponding notions defined up
to a uniform additive constant.
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10.4. Some properties.

Proposition 20. Suppose X is a proper hyperbolic space such that 0X
is not totally disconnected and let d € M(X). Then
(1) €; € (0,00) and
(2) for all a € X, the restriction of e%ilhe to (0X)? is a metric
on 0X.

Proof. (1) By the definition of M(X), ¢; > 0 (actually ¢; > 1). Now
we show €; < oo.

Fix any a € X and choose ¢ € (0,00) so that e~ is a metric
on 0X. Pick a connected component C' of X with more than one
point. C is closed in 0X, therefore compact. Since e~*?e induces the
topology of 0X, it is continuous with respect to this topology. Then
there exist two distinct points z,y € C' such that

e~ = diam(C) = sup{e <) | 2/, y' € C} > 0.

Let Cp := {2z € C | e *W)a = ¢=@W)a}. Since e*('a is continuous, C,

is closed in 0X. Since C is closed, the closure of C'\ C, in X, C'\ Cy,

lies in C. Since C is connected, C'\ C, cannot be closed in C, so
(C\C) NGy = (C\C)\ (C\ ) # 0.

Take any z € (C'\ C;) NC,, then we can choose u € C'\ C, sufficiently
close to z so that e~*"a < e=@IW)a. Since u € C'\ C,, we also have
e~<ula < e=«@W)a. The last two inequalities imply that there exists
ap € (0,00) such that for all & > ay,

e\ (e
o=, ) T\ o=wm, ) < b

emaelzlu), 4 pmaculy), o p—aclaly),

or equivalently,

Thus for each o > ag, e~ is not a metric, so ¢; < ape < 0.
(2) The triangle inequality for e~%{'a follows by continuity

as € /' e;. Also since €; > 0 and (X, d) is *Tgeodesic,
e i =0 & (zly),=00 & z=4y.
O

Hyperbolic groups with totally disconnected boundary are completely
described by the following theorem. The proof using the Dunwoody’s
accessibility theorem [11] can be deduced from [14, Ch.7,Th.19].
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Theorem 21. The ideal boundary of a hyperbolic group T is totally
disconnected iff I' contains a free subgroup of finite index.

By definition, totally disconnected spaces can be empty, so the state-
ment includes the case when I is finite (virtually free of rank 0), and
also when I is virtually Z (virtually free of rank 1). For a topological
space Z, dim(Z) = 0 iff Z is totally disconnected and non-empty. Here
dim(Z) denotes the topological dimension of Z.

Theorem 22. The following are satisfied for a hyperbolic group T.
(a) B(T) = =1 iff T is finite.
(b) B(T) =0 iff T contains a finite index free subgroup of rank > 1.

Proof. (a) holds because I is finite iff OT" is empty.

(b) First assume that I' = F is a free finitely generated group. The
Cayley graph of F' with respect to a free basis is a tree T'. Let d be the
word metric on the tree and d(z,y) := e~<*¥)a. Since T is a tree,

(z]2), > min{(z[y), , (y|2),}

holds for z,y, z € T, and by continuity for z,y, 2 € T, we have
6_€<$|z>a S max{e_g(w‘y)a’€_€<y‘z>a}

for all z,y,z € OT. This implies that ,(d) = e~1a = d¢ is a metric
on @X for all € € (0,00). One checks that this metric is in M (X,T).
But Hdim (90X, d) — 0 as € — oo, so A(I") = 0.

In the general case when I' contains a free group of finite index, I'
acts on a tree T with finite stabilizers of vertices ([25, Theorem 7.3]).
Denote dy the path metric in 7" and fix a vertex v in T. Given two
distinct elements g,h € T, let d(g, h) := dr(gv, hv) if gv # hv, and
d(g,h) := 1 if gv = hv. This defines a I'-invariant metric d on I" that
behaves just like the metric d on T. The metrics d and dr induce
the same metric d on 0T = 0T, so by rescaling d as above we obtain
A(T) = 0.

Conversely, if (T") = 0, then by definition I is infinite, and since the
topological dimension dim(0X) is at most the Hausdorff dimension of
0X, we have

dim(0X) < K(T) =0,
hence dim(0X) = 0. Now by Theorem 21, I' is virtually free, and by
(a), it is virtually free of rank at least one. O

Corollary 23. For a hyperbolic group T, if 0 < W(T) < 1
then B(T") = 0.
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From now on we will additionally assume that 0X is not totally
disconnected. Denote
M (X,T) := {d € M(X,T) | ¢; =1},
Ml(X) = Ml(X, ]_)
The space Ml(X ,I') is non-empty because by Proposition 20 for any
metric d € M(X,T), e;d € M;(X,T).

Definition 24. Given d € M(X), let
;(d\)(x’y) = e_ed(a:'y)a’ GEX, xayEXa

where (-|-)is the Gromov product defined by d.
In particular, if d € Ml(X), then

sd)(zy)=e e geX, zyeX.

Note that ; is scale-invariant, i.e. ;(d) = ;(cd) for any ¢ € (0,1).
This also holds for any ¢ € (0,00) as long as we do not require the
metric cd to be in M(X).

In view of Proposition 20, when 0X is not totally disconnected, the
hyperbolic dimension satisfies

AX,T) =inf{Hdim(dX,;(d)) | d € Mi(X,T), a € X}
= inf{Hdim(8X, ;(d)) | d € M(X,T), a € X}.

11. EQUIVARIANT STRUCTURES.

The following theorem makes a case for the use of I'-equivariance in
the definition of hyperbolic dimension.

Theorem 25. Let ' be a group, X and X' be hyperbolic complezes with
properly discontinuous cocompact I'-actions by isometries (= simplicial
automorphisms), a € X, ' € X', dy € My(X,T), dy € My (X', T).
If f : (0X,d,) — (0X',dy) is a homeomorphism commuting with the
[-actions on 0X and 0X', then the following statements are equivalent.
(1) f is conformal in 0X.
(2) f is symmetric in 0X.

(3) f preserves cross ratio, i.e. [f(b), f(c)|f(z), f(y)] = [b;clz,y]
for all (b,c,z,y) € 0°X.
(4) For each pairwise distinct triple x,u,v € 0X,
@), L), )
[z, uly,v]

erists and equals 1.

y—x along 0X \ {z}
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(5) For each pairwise distinct triple b,u,v € 0X,

i LOOIEW O] ey

[z, uly, v]

exists in (0,00).

(6) The metric derivative |f'(x)| is well-defined in (0,00) at each
x € 0X, it is continuous as a function of x, and the restricted
function

f(0X\ {x}adalm) — (0X'\ {m,}ada’lf(z))

is a similarity with factor 1/|f'(z)|.

Proof. If X is elementary, i.e. 0X consists of at most 2 points, the
equivalence of the above statements is a tedious triviality. From now on
we will assume that 0X consists of more than 2 points, so in particular
it does not have isolated points.
(6) = (1) and (3) = (4) = (5) are obvious.
(1) = (2) It follows from Definition 11 that conformal maps are sym-
metric.
(2) = (3) Let b,c € 0X be, respectively, the repelling and attracting
points of a hyperbolic isometry g € I'. Since f commutes with g,
the points o' := f(b) and ¢ := f(c) in X' are fixed by g and are,
respectively, repelling and attracting for g.

Let z,y € 0X \ {b, c} and denote for simplicity

7= f(z), =z :=g'(2),
7= g¢'(2") = ¢'(f(2)) =
v = f(y), wvi:=g'W),
vi=9'(0) =g (f(W) = f(¢' (W) = [ (%)

f(g'(z)) = f(=),

Since ¢ is an isometry both in X and in X', it preserves the cross-ratios,
and since it fixes b, ¢, b, ¢/, we have

(28)  [b,cle,y] = [b,clzi,pi] and [V, [, y] = [V, c'|as, yil

for all 3.
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Using (28), Theorem 8, (20) and the assumption that f is symmetric,

we obtain

[

bl / ! ! bl / I I
Wl y) L Wlhy)

[t', o'l yil l', '], i)

[b,clz,y] — = [belmi ] oo [b,alzi, yil[a, |z, v

_ i W@z y] do (¢, y}) da(c, z:)
i200 by, alzs, i) im0 dy (¢!, 21) da(c, i)
N d
)

NI
_Waid, ey
|[b’ CL|C, C]| 00 da’

This shows that the cross-ratio [b, c|z,y] is preserved by f provided b
and c are fixed points of a hyperbolic isometry g € I'. But such pairs
are dense in (0X)? ([15, Corollary 8.2.G]), therefore by the continuity
of f, the cross ratio is preserved by f in the whole domain 0°X.

(4) = (6) Fix an arbitrary z € 0X and then choose u,v € 0X so that
z,u,v are pairwise distinct. Take y € 0X \ {z} sufficiently close to
so that y € 0X \ {z,u,v}. Denote u',v',2', 3 the respective images of

u,v,x,y under f. As y — x along 0X \ {z},

d , d ! o
\f’(m)\ — hm a (Jf(x)af(y)) — hm l\l, ('T 73/) — hm
do(2,9) da(, )
) e (' |y’ ') =€ (! [v') o1 —€ (Y [u') o1 +€ (u' [v") o1
= lim e€(@sulyv)—e(z[v),—e(ylu), +e(ulv),
Iy ] e
= lim

[z, uly, 0] (o), —e(ylu), +e(ulv),
. |[33I, u’|y’, ’UI]| e €@V o= € (@ U)o o€ (W [v") o

=1 .
" |[$a u|y, 'U]‘ e—€xlv), e—€(z|u), pelulv),
da, (U’a U) Czal (CL',, ’U,,) Cza/ (:L", ’Ul)
cza(x, u) da(x, v) d, (u', ')
Cza z\U,
da/|$/ (u’, U')

All the statements of (6) follow from the above equality.

(@ [V Vgt

e—€(ely),
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(5) = (1) is similar to (4) = (6): as y — b along 0X \ {b},

ol v —€ (U |v") 1 —€ (' [u') g1 +€ (W' [V") o1

B [0, uly, v] e— (b0, —e{ylu), +e(ulv),
i Wy, 0] em e e e
[b, uly,v] e—€(blv), e—€lblu), ee(ulv),
[V, 'y, v'] da(u,v)  du (¥, 0) du (W, 0")
buly,v]  du(b,u)da(b,v)  du(u', o)

— llm |[b,’ U’I‘y,’ /UI]‘ . da|b(u” U)
[6, uly, v] da’|b’ (u',v")

= lim

€ (0, 00).

g

Remark. In [27] and [29], Tukia considered an equivariant map f
between subsets of S™, and, both in differentiable and measurable set-
tings, provides sufficient conditions for it to be Mobius. In our setting,
[' can be any hyperbolic group and the derivative is the metric one.

12. QUESTIONS.

Any open questions about the Pansu’s conformal dimension and its
Ahlfors regular version can be asked about the hyperbolic dimension
h(T) as well. We present questions; some of them were inspired by the
work of Bonk and Kleiner [3].

Given a hyperbolic group I', it might happen that there exists de

M(X,T) such that Hdim(d) = %(T"). In this case we will say that the
hyperbolic dimension %(T") is achieved, or realized at d.

Question 1. Under what assumptions on I' and 0L is i(T') achieved?
Equivalently, when there exists d € M(T',T") such that Hdim(@F, d) =
i(T) for all a € X 2 Is it achieved if OT' is homeomorphic to S??

This question is inspired by the Cannon’s conjecture and results
in [3].

Question 2. Let ' be a hyperbolic group with OT' homeomorphic to S?
and d be the chordal metric on S?. Does there exist a € (0,1] and a
conformal homeomorphism (0T, d,) — (S, d*)?

Question 3. More generally, if a group I acts topologically transitively
by conformal homeomorphisms on a metric space (Z, CZ) homeomorphic
to (S? d), does there erist o € (0,1] and a conformal homeomorphism

(Z,d) — (S d*)?
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Question 4. If the answer to Question 2 is “no”, is it “yes” under the
additional assumption that the hyperbolic dimension of I' is achieved?
Furthermore, if d € M(T',T") is such that Hdim(9T',d) = A(T), does

v,

there exist a conformal homeomorphism (9T, d) — (S?,d)?

Questions 2-4 are analogs of the Riemann mapping theorem in the
equivariant setting.

Following Bonk and Kleiner [3], define the Ahlfors regular confor-
mal dimension of OI', denoted Arcd(9I'), as the infimum of Hausdorff
dimensions of Ahlfors regular metrics which are quasisymmetrically
equivalent to d.

Question 5. Is there an example of a group T for which Arcd(T") #
()¢

Question 6. If 9T is homeomorphic to S?, then is h(T') achieved?

QuesAtioAn 7. Let I be a hyperbolic group with connected OI'. Suppose
that dy,dy € My (I',T") are such that for any a € T,

Hdim (9T, ;(d;)) = Hdim (T, ;(d2)) = A(T) > 1.
Then are dy and do Tequivalent, i.e. is |c21 — ci2| bounded?

If the answer is yes, this would be a version of the Mostow rigidity
theorem in the discrete group setting. The condition %(I") > 1 excludes
the surface case.

Question 8. Suppose I' is a hyperbolic group such that OI' s homeo-
morphic to the n-dimensional sphere. Does it follow that I' acts properly
discontinuously and cocompactly by isometries on a simply connected
Riemannian (n + 1)-manifold? Does there erist such a manifold with
negative sectional curvature?
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