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ABSTRACT. We introduce the functor & which assigns to every metric space X its symmetric
join eX. As a set, X is a union of intervals connecting ordered pairs of points in X. Topologi-
cally, ®X is a natural quotient of the usual join of X with itself. We define an Isom (X )-invariant
metric d, on ¢X.

Classical concepts known for H" and negatively curved manifolds are defined in a precise
way for any hyperbolic complex X, for example for a Cayley graph of a Gromov hyperbolic
group. We define a double difference, a cross-ratio and horofunctions in the compactification
X = X UOX. They are continuous, Isom(X)-invariant, and satisfy sharp identities. We
characterize the translation length of a hyperbolic isometry g € Isom(X).

For any hyperbolic complex X, the symmetric join X of X and the (generalized) metric
d. on it are defined. The geodesic flow space F(X) arises as a part of eX. (F(X),d,) is an
analogue of (the total space of) the unit tangent bundle on a simply connected negatively curved
manifold. This flow space is defined for any hyperbolic complex X and has sharp properties.
We also give a construction of the asymmetric join XeY of two metric spaces.

These concepts are canonical, i.e. functorial in X, and involve no “quasi”’-language. Appli-
cations and relation to the Borel conjecture and others are discussed.
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0. INTRODUCTION.

Let X be a proper geodesic hyperbolic metric space in the sense of Gromov. In [30], the
following discrete-continuous dichotomy was shown for a non-elementary closed subgroup H <
Isom(X) acting cocompactly on X: either

e H has a proper non-elementary vertex-transitive action on a hyperbolic graph of bounded

valency, or

e there is a finite-index open subgroup H* < H and a compact normal subgroup K < H

contained in H* such that H*/K is a connected simple Lie group of rank one.
This says, less formally, that to understand general hyperbolic spaces it suffices to study hy-
perbolic graphs and Lie groups. While the theory of Lie groups and symmetric spaces is quite
developed, the hyperbolic graphs and groups introduced by Gromov [27] are relatively recent
phenomena. By its very nature of being discrete a hyperbolic graph lacks a nice local structure,
and therefore the tools of differential geometry.

In this paper we fill in the gaps in the discrete spaces and the blanks in the discrete spaces
theory. The main philosophical point is that hyperbolic groups, despite being discrete, do give
rise to many concepts that were known on the continuous side. This paper introduces several
sharp geometric concepts first for arbitrary metric spaces, and then for hyperbolic spaces in
the sense of Gromov. These concepts in particular eliminate the need of the “quasi”’-language
when talking about hyperbolic groups and spaces.

We introduce the notion of symmetric join. If X is a set, the symmetric join of X, denoted X,
is the “obvious” union of formal intervals connecting ordered pairs of points in X; the interval
connecting a point to itself is required to degenerate. When X is a topological space we define
a natural topology on ®X. When X is a metric space, we define a metric d, on ®X with natural
properties. The symmetric join is therefore an example of a metric join. Even though X is an
abstract union of intervals, the construction of d, is very explicit. The metric d, is canonical
and Isom(X)-invariant.

In [31], the Baum-Connes conjecture was proved for hyperbolic groups and their subgroups
by constructing a strongly bolic metric d on any hyperbolic group. Having a strongly bolic
metric is not sufficient for the constructions of the present paper. We show that (a modified
version of) d has stronger properties and use it to define the double difference (-,-|-,-) in X
(see 6.2). The main property used is that d and (-, -|-, -) behave “exponentially well” at infinity



4 IGOR MINEYEV

(Theorem 32). We show that the double difference continuously extends to X and gives rise
to a continuous cross-ratio in X (section 7). It is the use of the metric d that allows things to
extend continuously to the boundary. This generalizes the work of Otal [34] who defined and
used the cross-ratio for negatively curved manifolds.

The “Hyperbolic groups” article by Gromov [27] was an inspiration for many mathematicians
over the last years, including the author of this paper. Gromov outlined a construction of a
metric space G with R-, Z,-, and I'-actions [27, 8.3.C]. He considers the set of all biinfinite
geodesics in the Cayley graph and then identifies those geodesics that connect the same pairs
of points in OI'. Mathéus [29] and Champetier [10] provided further details of the Gromov’s
construction. The identification of geodesics is by quasiisometries, so G is rather a quasigeodesic
flow; R acts on the R-orbits in G by quasiisometric homeomorphisms.

In [23] Furman takes 0°T x R as a model set for the flow space, so geodesics are unique by
definition. He uses boundedness of cocycles from [13] to construct a geodesic current, i.e. an
invariant measure on 9°T", then provides a I'-action on §’T' x R and a I'-invariant cross-ratio
on OI'. Both the action and the cross-ratio are measure-theoretic, that is defined up to subsets
of measure 0. Biihler [5] considers the space of all geodesics in a hyperbolic space X, as in the
Gromov’s construction, and uses the amenability of the I'-action on 0I' to make a measurable
choice of geodesic, i.e. a choice of geodesic for almost every pair of points in JI'. Since the
geodesics in X are chosen in a measurable fashion, and they usually do not depend continuously
on their endpoints, there is no obvious way to topologically identify the union of such geodesics
with 9T x R. In both [23] and [5] the space considered is a measure space rather than a metric
space. Bourdon [2] presented geodesic flows with sharp properties in the case of CAT(—1)
spaces.

The present paper provides a new approach to constructing a geodesic flow F(X) for an
arbitrary hyperbolic complex X, for example when X is a Cayley graph of a hyperbolic group
(see 5.3 for definitions). First we enlarge ®X to the symmetric join X of the compactifi-
cation X = X U dX. We put the metric d on X and show that the metric d, canonically
determined by d extends to X (with the obvious infinite values allowed at infinite points).
The use of d is essential here. Then F(X) C ®X is by definition the union of lines in ®X that
connect pairs of points in 0.X, equipped with the restricted metric d,.

Our construction of symmetric join X is more general than the flow space, since it allows
for lines to connect points in X as well as points in 0X. But even when restricted to F(X)
it provides strong properties (see Theorem 60). Generally speaking, the outcomes of this
construction are continuous, rather than measurable as in [23, 5], and sharp, rather than defined
“up to a bounded amount” as in [27, 29, 10, 35]. Continuity is important for future topological
applications. The construction is also more general since we consider an arbitrary hyperbolic
complex X with the action of the full simplicial isometry group Isom(X), i.e. the group acting
on X does not have to be discrete. The metric d,, both on F(X) and on X, is Isom(X)-
invariant. Each R-orbit in F(X) is an isometric copy of R. R acts on (F(X), d,) by bi-Lipschitz
homeomorphisms, and on each R-orbit by isometries in the standard way. The R-orbits in F(X)
converge synchronously and uniformly exponentially.
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Symmetric join is a unified concept relating topology and geometry: it combines the usual
notion of topological join with the notion of geodesic flow. Symmetric join plays the role of
a Riemannian structure on a manifold, and it is canonically assigned to every metric space.
When X is a hyperbolic complex, ®X provides a link between the local and global structures
of X. This is important, for example, in the study of the topology of manifolds; the manifolds
can be chosen to be smooth or not.

For any hyperbolic group I' acting on a hyperbolic complex X, for example its Cayley graph,
F(X) provides a convenient model space. It plays the role of (the total space of) the unit
tangent bundle over a manifold, even though no manifold was given. There are other models
provided by the construction: ¢X, eX, F(X), XeX, XeX, XeX, etc (see section 14). They
are all equipped with canonical induced I'-actions. Their geometry is closely related to the
geometry of [' but, unlike I', the spaces are not discrete. It is an interesting question how one
can use these models to generalize the Farrell-Jones theory [16, 17, 19, 18, 21| to manifolds with
hyperbolic fundamental groups. Also, the asymmetric join of two manifolds might be used in
place of a cobordism. One would probably need to generalize the theory of Chapman [11],
Ferry [22] and Quinn [36], and to come up with an “h-join theorem” that would play the role
of the h-cobordism theorem.

We define continuous horofunctions both in X and in ®X (Theorem 55). They depend only
on a point at infinity, rather than on a ray converging to the point (section 10). For each
hyperbolic g € Isom(X), we define the translation length I(g) in terms of metric d on X. I(g)
is indeed realized as the shift of the axis of g in F(X) (see section 12 and Theorem 60(i)).

Symmetric join is used to provide a notion of metric join of two metric spaces Y and Y,
called the asymmetric join Ye Y’ (section 14). The asymmetric join is therefore another example
of a metric join. In the case when the two spaces are given an action by the same group, for
example when Y and Y’ are the universal covers of two manifolds with the same fundamental
group, we describe a canonical way to put a metric on YeY’ (see 14.1). This situation occurs,
for example, in the Borel conjecture that asserts that two closed aspherical manifolds with the
same fundamental group are homeomorphic.

If one thinks of the intervals in Ye Y’ as parameterized by [—o0,00], the set of slices at
various times ¢ € [—00, 00| is a sweep-out, or rather sweep-between, from Y to Y. Topologically
slices are the same for all t € R (they are all homeomorphic to Y x Y’), but the metric on
Ye Y’ makes it interesting: the slices indeed approach Y as ¢ - —oo and Y’ as t — oo, in
a metrically controlled way (Gromov-Hausdorff convergence on bounded subsets). This is of
interest in particular in relation with the Borel conjecture. If there exists a homeomorphism
between manifolds M and M’, then it must be present in each slice of MeM’, diagonally. Since
the construction is equivariant, it also allows working with the universal coverings (this gives
even more freedom): denote YV := M and Y’ := M'. One needs to find an equivariant copy
of M in each slice of YY" (see section 14). Another advantage of using universal coverings is
that when (M) = m(M') is hyperbolic, the ideal boundary of Y and Y’ can also be used,
since the join of the compactifications YY" is defined as well.
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The constructions of this paper require sharp estimates carefully written out. At the first
reading, the reader might want to take a look at 2.1 and theorems 32, 35, 40, 45, 55 and 60
which constitute the main results of this paper. Sections 1.1-5.2 deal with arbitrary metric
spaces and simplicial complexes. After that we work in the category of (uniformly locally
finite) hyperbolic complexes.

One interesting open problem is to come up with a topological (or non-Riemannian) proof
of the Poincaré conjecture, that is a proof in the PL category that does not rely on the smooth
structure of the manifold. The right way to do this is to prove the group-theoretic rigidity
conjecture, that is the Borel conjecture in the case of hyperbolic fundamental groups. This
implies the Poincaré conjecture [20, 19], and it can be viewed as a group-theoretic (or discrete)
analog of the Mostow rigidity theorem.

As we mentioned above, the symmetric join plays the role of a Riemannian structure. Note
also that there are examples of closed manifolds with hyperbolic fundamental groups that
do not admit a Riemannian structure of negative curvature [15, 12], and our symmetric join
construction applies in those cases. Moreover, it applies to all dimensions, and to all PL
manifolds that do not admit smooth structure.

Another interesting question is the Cannon’s conjecture [6, 8, 9, 7] that a hyperbolic group I'
with OI' homeomorphic to S? admits a proper cocompact action on H?. Note that the boundary
of a hyperbolic group is usually very much not a smooth manifold, even if it is a manifold
topologically, so one would probably need to use metric geometry rather than the Riemannian
one. The essence of all these questions is establishing a link between the local and global
structures of hyperbolic metric spaces, and the symmetric flow provides such a link.

The author benefited a lot from helpful conversations with Alex Furman, Misha Gromov,
Tadeusz Januszkiewicz, Lowell Jones, Misha Kapovich, Yair Minsky, Frank Quinn and Shmuel
Weinberger. Misha Gromov comments that the existence of a continuous cross-ratio and a
geodesic flow with sharp properties can be also deduced from the discussion in [27].

The author would like to thank the hospitality of MSRI, Berkeley, in the summer of 2002, of
Max-Planck-Institut, Bonn in the summer of 2003, and of IAS, Princeton, in the year 2003-04,
where he was supported by NSF grant DMS-0111298. This project is partially supported by
NSF CAREER grant DMS-0228910.

1. PRELIMINARIES.

1.1. The double difference and Gromov product. Let (X,d) be a metric space. The
double difference in X is the function (,-|-,-) : X* — R defined by

(1) (a,d|b,b) := %(d(a, b) — d(d', ) — d(a, V) + d(d, b')).
This notion appeared in a paper by Paulin [35] (under the name “cross ratio”).
The following properties are immediate from the definition.
e {(a,d'|b,t)y = (b,V|a,d).
e {(a,d'|b,t)y = —(d',alb,bt)) = — (a,d'|t/, D).
e {(a,alb,b') =0, {(a,d’|b,b) = 0.
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o (a,d'|b,V/) + (a’,a"|b, V') = (a,a"|b, V).
e {(a,blc,z) + (b, cla,z) + {c,alb,z) = 0.
The function

2) (alb), = (a,cle,b) = %(d(a, ¢) +d(b,¢) — d(a, b))

is the Gromov product with respect to metric d. The triangle inequality implies (b[c), > 0. The
two concepts are related by the formula (a,b|z,y) = (b|z), — (bly),.

1.2. Generalized metrics. We will deal with points at infinity, so it is convenient to extend
the class of metric spaces. A generalized metric space is a topological space Y with a function d :
Y xY — [0, 00] such that d(z,y) = d(y, z), and d(z,y) = 0iff z = y, d(z, 2) < d(z,y)+d(y, 2),
for all z,y,z € Y. Here we use the conventions r + co = co and r < oo for every r € [0, o¢].
For z € X, the finite component of z is the set {y € Y | d(z,y) < oo}. Obviously, Y is the
disjoint union of its finite components, and the restriction of d to each finite component is a
metric in the usual sense. Moreover, we require as a part of definition that the topology on
each finite component V' of Y coincides with the topology induced by the restriction of d to V.
The function d is called a generalized metric on Y. Note that, for a given d, there might be
many topologies on Y that make (X, d) a generalized metric space.
The main examples to keep in mind:

e Any metric space is a generalized metric space.

e R := [~00, 0o] with the topology of a closed interval and the obvious generalized metric
that we will denote | - |; that is, |z — y| denotes the (generalized) distance between x
and y.

e Given a hyperbolic graph G, (G, d) is a generalized metric space, where G = G L1 9G is
the compactification of G by its ideal boundary and d is the obvious extension of the
word metric on G to G: we have d(z,y) = oo for any € 9G and any y € G \ {z}.

A map X — Y between generalized metric spaces is called an isometric embedding if it
preserves the generalized metric. Note that an isometric embedding must not be continuous.

1.3. Tequivalence, *equivalence, **equivalence. In this section we introduce convenient
equivalence relations of functions that will be used later in the paper.
For subsets U C R and V C R, addition and multiplication can be defined in the obvious
way:
U+Vi={u+v|uelU veV} and UV :={uw |uelU veV}

If U or V consists of just one element, then we write the element instead of the set notation.

Let S be any set, and ¢ and 1 be functions from S to R. We say that ¢ and v are Tequivalent,
denoted ¢ ~ 1, if there exists B € [0, co) such that ¢(s) € ¥(s)+[—B, B] for all s € S. They are
“equivalent if there exists A € [1, 00) such that ¢(s) € [1/A, A]¢(s) for all s € S; and they are
**equivalent if there exist A € [1,00) and B € [0, 00) such that ¢(s) € [1/A, A]¢(s) + [-B, B]
for all s € S. It is left to the reader to check that these are indeed equivalence relations.



8 IGOR MINEYEV

We will say that a map f : (X1,d;) = (X2, d2) between metric spaces is a Tmap if d;(z,y)
and dy(f(z), f(y)) are Tequivalent as functions of (z,y) € X; x X;. Similarly for *map and
**map.

A Tmap f: (X1,d1) = (Xo,ds) is called a Tisometry if there exists a Tmap f : (Xo,dy) —
(X1, d;) such that fog and go f are Tequivalent to the identity maps. A **map f : (X1,d;) —
(Xo,ds) is called a *Tisometry if there exists a **map f : (Xy,dy) — (X1,d;) such that fog
and go f are Tequivalent to the identity maps. *Tequivalence of metric spaces is the same thing
as quasiisometry. Our definitions of equivalences are more general since they allow considering
functions with negative or infinite values.

Lemma 1. Suppose that @, ¢, 1, ' take values in R.

(a) If o ¥ and @' ~ ', then (o + ') v (Y + ') and (o — ') v (Y — ).
(b) If o ¥, then |@| v 9]

The proof follows directly from definitions.

1.4. Dealing with R. Denote R := [~oc, 00]. Throughout the paper we will consider the
notions of addition, subtraction, multiplication, taking absolute values and distances in R,
generalizing the corresponding notions in R. For example,

7+ (£o0) :=+oc for reR, (£00) -l :=+o00 for [ € (0,00],

00 — o0 =0, (—o0) — (—o0) :=0, |oo — 0o := 0, |(—o0) — (—o0)| := 0.
1.5. The smooth-out. Call a function  : R — R non-expanding if |0(t) — 8(s)| < |t — s| for

all s,t € R. Non-expanding functions might be discontinuous: let # map [—o0, 00) to [—oc, 0)
and oo to oo.

Lemma 2. Let 6 : R — R be a continuous non-expanding non-decreasing function whose image
is an interval [, B] C R. Then the function ' : R — R,

0'(t) = / T o+ t)e;'r dr

o0

is a well-defined continuous non-erpanding non-decreasing map from R onto [a, B]. If, in ad-
dition, a < f3, then @' is an increasing homeomorphism of R onto |«, f5].

Proof. If there exists ¢ € R with 6(¢) = oo, then since 6 is non-expanding, #(R) = {oo}, and
since § is continuous, (R) = {co}. Then #'(R) = {oo} and the lemma holds. Similarly for
the case 6(t) = —oo, so from now on we will assume #(R) C R. Since 6 is non-expanding,
then for each ¢t € R, #'(¢) is a well-defined real number. Since 6 is non-decreasing, #(—o0) = «,

0(c0) = B,

o (—o0) = /oo o(r — oo)e_; dr = 0(—o0) /oo 6_;' dr = a,

and similarly, §'(c0) = .
¢' is non-decreasing: if t < ', then for allr € R, r+¢t < r+ 1, 6(r +t) < 0(r +1'), hence
'(t) < @'(t'). This implies that ¢'(R) C [«, 3].
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Since # is non-expanding,

00 —|r| 0o —|r|
|0'(t’)—0’(t)|§/ |9(r+t')—0(r—|—t)|€2 drg/ |(r—|—t')—(r+t)|62 dr < |t — ¢

shows that €' is non-expanding, therefore it is continuous on R.

Now we show the continuity of #' at —oo. First assume that o € R. For any ¢ > 0 pick
T € R such that §(T) < a+¢/2 and R € [0,00) such that [ re"dr = e ®(R+1) < e.
Since 6 is non-expanding, 0(r +t) < 6(t) + [0(t + r) — 0(t)] < 6(t) + |r|. We claim that
¢'([—o00, T — R]) C [, @ + €]. Indeed, for any ¢ € [—00,T — R}, since 6 is non-decreasing,

R e_|7'| S e_|7'|
9'(t):/ or +1)% dr+/ or +0)%5 - dr

R - e—r! "’ o0 e~Irl
g/_ 0(R+(T—R))Tdr+/R 0@t) + |r)) 5 dr
< [" 0(:/1)6_2“| dr + / 0Ty +7) e; dr

:0(T)+/ reldr< (ate/) bef2=ate

This shows the continuity of #" at —oo when a@ € R. When o« = —co the argument is similar:
for any N, pick T so that (T) < N —1 and let R = 0, so that [°re™" dz = 1, then deduce
that 6’ ([—o00,T]) C [—o0, N]. If @ = 0o, then since 6 is non-decreasing, §(R) = {oo}; we dealt
with this obvious case before. The same argument applies to 0o, so #' is continuous on R. This
implies that #" maps R onto [, A3].

Now assume « < (3. It remains to show that @' is strictly increasing, and for that it suffices
to show that € is such on R. Take any ¢, € R with t < #'. Suppose that for all r € R,
O(r +t) = O(r +¢'). Then 6((¢' —¢t) +t) = (') = 6(t) and inductively, for any positive
integer n, O(n(t' —t)+t) =0((n—1)(¢' —t)+t') =0((n—1)(t' —t) +¢) = 6(t). Since 6 is non-
decreasing and continuous, this implies that € is a constant function, which is a contradiction
with our assumption o < (. Therefore there exists 7o € R such that 6(ro +t') > 6(ro + 1).
Since §(r +t') — 6(r +t) > 0 is continuous in 7,

o0 =|rl

o) — 0(t) = / (00 +¢) — 0(r + 1)

o0

dr > 0.

O

The lemma says in other words that the “operator” € +— #' makes homeomorphisms out of
non-constant continuous monotone functions.
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1.6. Auxiliary functions 6 and ¢'. For all o, 3 € R with o < 8 we define a specific function
Ola, ;-] : R — [, B] that mimics projection of one geodesic into another.

a if t€[—o0,a]
Olo, Bit] =4 t if t€[a,f]
g if te s, o).

In other words, 0|, 3; -] is the obvious extension of the identity map [«, 5] — [«, 5]. € satisfies
the following properties.

e () is continuous in three variables.

e O, B;-] maps R onto the interval [o, ).
e O[a, f;-] is non-expanding, that is, |0[c, 5;t1] — Oo[a, B; ta]| < |t1 — taf-
e O[a, 3;1] is increasing in « and in B
e [—00,00;-]: R — R is the identity map.

o 0is shift—invariant: Ola+s,B+ s;t + s] =0[a, B;t] + s for all s € R.

Define a new function #'[-,-;-| as in Lemma 2:
0 Gy
o fit]i= [ las i+

Then 6’ satisfies all the above properties of # and, in addltlon,
o for a < f3, #'[c, B; -] is a non-expanding homeomorphism of R onto [, A].

The following lemma, says that # and €' are close, i.e. the smooth-out does not change
functions much.

Lemma 3. #'[«, 5;t] = 0|a, B;1] + (e“t_a| — e"t_m) /2 foralla,BER, a< B, teR In
particular, |0, B;t] — 0]a, B;t]| < 1.

Proof. By the definitions of 8’ and 6,
o—t e_‘r‘ Bt 6_|T| 0 e_‘r‘
0'[04,5;15]:/ a dr+/ (r+1) dr + B dr
—00 2 a—t 2 p—t 2

Now the statement is proved by brute force calculus in each of the following cases: ¢ € (—o0, @],

t€la,p]teB o0). O
The derivative of #'[c, §; -] is obtained by direct calculation:
(et —et8)/2 if t € (—o0, al,
(3) —0’[a Bit] = 1— (e*t+e7F)/2 ift e[, f

(—e2t+efH)/2 it e[B,00).

This extends by the same formula to a function

0
a@'[a Ba ] : [—O0,00] - [Oa ]-]
The function is increasing on [ 00, M} and decreasing on [#, oo}.
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Lemma 4. Suppose that o, 3 € R, a < 3, t € R and € € [0, (1 — e*?)/2], then
0
Ol it €latefi—d = o 0bil>e

Proof. Fix «, f and €. If f — a < 2¢, then the statement is obvious, so we assume 8 — o > 2e.
Then we can denote ¢, the number such that #'[«, 5;t.] = §—e. By Lemma 3 and the definition
of 6,

Ola, B; 8] =B — (1 —e*P)/2< B— €= 0o, B; 1.

Since #'[a, B; -] is increasing, we have 8 < t.. Then by Lemma 3,
B—e=0nB;t] =B+ (e —ef7) /2, hence (—e® ' +ef7l)/2> e
(The last inequality indeed holds when = —o0 or 8 = c0.) Then by (3),

%0’[04,5;256] = (—e* Tt ef ) /2> e

Similarly,

9 10,5 =

where s, is defined by #'[a, B; s] = a+ €. Now it is a calculus exercise to see from (3) that the

minimum of the function ae’ [a, B; -] on the interval [s,,t.] is attained at the endpoints, so

%9'[&,&7&] > e forall te€ [st

2. ®X: THE SYMMETRIC JOIN OF X.

2.1. Symmetric join as a topological space. Given a topological space X, its usual topo-
logical join (with itself) is the “obvious” union of intervals connecting pairs of points in X.
Formally, it is the topological space X XX := X2 x R/ ~, where (z,y, —00) ~ (z,%, —00) and
(z,y,00) ~ (z',y,00) for all z, 2" y,y" € X. We will call the further quotient

eX 1= XXX/ ~

by the equivalence relation (z,z,s) ~ (z,,t) for all z € X, s, € R, the symmetric join of X.
That is, each interval connecting a point x € X to itself degenerates to a point in ®X. The
topology on ®X is induced by the double quotient X2 x R = XXX — eX.
Applying the two quotients above in the reverse order gives an equivalent, and more conve-
nient for our purposes, definition of symmetric join:
e denote ©X := | [{[a,b] | a,b € X}, where [a, b] is a topological copy of R if a # b and a
point if a = b;
e let 8X be the quotient of ©¢X by the equivalence relation identifying the left endpoint
of each [a, b] with [a, a] and the right endpoint with [b, b].
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The topology on X is induced by the obvious double surjection
(4) XZXR—»0X —» X

in which the lines {a} x {b} x R map onto intervals [a, b].

The canonical embedding X < X a — [a, a], is a homeomorphism onto its image. We will
identify X with its image in ®X. The sets {a} x {b} xR in X2 x R, and their images in X XX,
©X, and X, will be called lines. In particular, each point a € X is the line [a, a]. Denote

*X :=eX \ X CeX.

This is the open symmetric join of X. The topology on *X is induced from its inclusion
into #X. Let A be the diagonal in X2. The above double surjection restricts to a bijection
(X%2\ A) x R — *X, so *X is topologically (X?\ A) x R.

When X is a metric space, we will define actions by R, Z, and Isom(X) on X, and equip
X with a Zo- and Isom(X)-invariant metric which, as we will see later, also behaves nicely
with respect to the R-action. That is, the symmetric join of X will become an example of a
metric join.

2.2. Parametrizations of #X. Given a metric space (X, d), first we want to put a metric on
each line in ®X. We will do this by identifying each line with a subinterval of R.

Define the functions (-,-|-,-) and (-|]-). in X as in 1.1, using the metric on X, and fix a
basepoint 7y € X. For every pair (a,b) € X?, denote

a = — (blzg), and B = (a|zo)y ,

these are the end-point coordinates of the pair (a,b) (with respect to zy). Let [a,b] = [a, ],
be a copy of the interval [o, 5] C R, and ]a, b] its interior. Note that the interval [o, 5] C R
always contains 0 and its length is

B — a = (a|zo), + (blzo), = d(a,b) > 0.

It is convenient to think of [a, b] as a formal geodesic connecting a to b; it indeed degenerates
to a point when a = b. The convenience of this parametrization of [a, b] will be clear later when
we define the Isom(X)-action and the projection of X to [a,b]; the basepoint xy will project
to 0 € [a,b], and a and b will project to the endpoints of [a,b]. Also this parametrization will
be needed to extend things to infinity when X is a hyperbolic complex.

Define functions

(5) I[CL, b; ]l = [[CL, b; ']lwo R — Ilaa b]] by I[a'a b; t]] = 0[&, 5; t] and

(6) la,b;-]" = [a,b;-], : R — [a, b] by [a,b;t] := [, B; ],

where 6§ and @' are the functions from 1.6. By the definition of 6, [a,b;-] is just the obvious
extension of the identity map of [a, b], so it is a non-expanding surjection. A real number ¢ will
be called appropriate for [a,b] if ¢t € [a, ﬁ}. A number ¢ appropriate for [a, b] will be called the

xo-coordinate of the point [a, b;t] in [a,b], or simply the coordinate when z; is understood. If
(c, B) are the endpoint coordinates of (a, b), then

(7) [a,b;t]" = [a, b; 0, B; 1]
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This holds just because [a, b; -] is identity on appropriate numbers.
[a,b;-]’ is the smooth-out of [a,b;-]. By Lemma 2, [a,b;-]' is a non-expanding surjection,
and it is an increasing homeomorphism when a # b. Denote

(8) X = [{la,0] | a,b € X}, 8X = 8X/ ~,

where the equivalence relation ~ identifies the left endpoint of each interval [a, b] with the point
[a,a] and the right endpoint with [b,b]. Thus we view X as embedded in 8X via a — [a, a],
and abusing notations we view [a, b] as a subset both of 2X and of 8X.

We denote | - | the standard metric on each [a, b], that is |z — y| is the distance between z
and y in [a, b].

2.3. The models X and gX. The above maps [a, b; -]’ induce surjections
(9) [5] : X2 xR — X and [ ] : X* xR — X,
and passing to quotients, bijections
(10) [ ] :0X — 02X and -3 ] - eX — 8X.

To summarize:

e X and X are two different models, or parametrizations, of the symmetric join;

e ©X has a natural topology, and each line is topologically parameterized by R;

e 8X is just aset, but lines in X are metric spaces which are isometrically parameterized
by closed subintervals of R;

e the two models are identified by the bijection [-,-;-]" in (10).

We induce the topology on gX from ®X by this bijection. Equivalently, the topology on 8X is
induced by the surjection [-,-;-]': X2 x R — @X. This topology is consistent with the metric
topology on each line in 8X because each [a,b;-]' : R — [a, b] is a homeomorphism.

The bijection in (10) allows us to identify ®X with 8X, so we will often use the simpler
notation ®X instead of 8X.

2.4. The models *X and xX. There are similar models for the open symmetric join: denote
(11) #X = J{la,b[C 8X | (a,b) € X’} = (8X) \ X C 8X.

Define the topology on %X by its inclusion into 8X.

Let A be the diagonal of X2. We can assume (a,b) € X?\ A above, since ]a, b[ is empty
otherwise. Let ]a, b;-[": R —]a, b] be the restriction of [a, b;-]" to the interiors of the intervals;
this restriction is a homeomorphism. In the quotient this gives bijections

(12) I [ (XP\A) xR — X and I X — X

which induce the same topology on %X as the one described above.
Our goal is to equip the symmetric join with a metric and three actions. In the process we
will be using the two models interchangeably.
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2.5. Change of basepoint in ®X. The parametrization [a,b;] = [a,b; ]s, of each line
[a,b] = [a, b]., depends on the choice of zy € X, but the isometry type of [a, b] does not. An-
other choice of basepoint, ; gives another interval [a, b];, := [— (b|z1), , (a|z1),] of length d(a, b)
and another identity map

[a,b; Loy = [ {bl21) 5 (alz1)y) = [a, b, -

We will always identify two such parametrizations by the unique isometry between [a, b],,
and [a, b],, for all a,b € X. Since the left-end points [a, b; — (b|zy),]s, and [a, b; — (b|z1), ]z
must be identified, the explicit formula is

(13) la,b; t]z, = [a, b;t + (b|z1), — (b|z0) 20 = [a,b;t + (@, b|z1, 20)] a0, teR.

2.6. The R-action on ®X. Let X be an arbitrary metric space. The shift action
+:RxR—=R, (r,t) = rt, where rft:=r+t

with the convention r & 0o = +00, induces the obvious R-action on X 2% R by translations in
the R-coordinate, and, passing to the quotient, the R-action on ®X:

+:Rx (eX) — &X, (r,2) = rt2.

This action preserves lines and fixes X pointwise. The R-orbits in X are exactly the points of
X and the interiors of the lines in X. The bijection [-,-;-]" transfers this further to the action

+:Rx(gX)— (8X), (r,2)—r'z
The explicit formula for the action is r*[a, b;t]" := [a, b;r + ¢]'.

Lemma 5. For each x € [a,b] C 8X, the R-orbit map R — ([a,b], |- |), 7 — 7Tz, is non-
expanding, therefore continuous. In addition, if x €]a,b], then the orbit map is an increasing
homeomorphism of R onto |a, b[.

Proof. (a) = = [a, b;t] for some t € R. Since [a, b; -]’ is non-expanding,
rfe —ria| = |[a,byr + 1] = [a, by + 21| < [(r1 +1) = (ra +8)] = |11 =72,

i.e. the orbit map is non-expanding. If z €]a,b] then a # b, t € R and the orbit map
r —]a,b;r + t[' is an increasing homeomorphism R —]a, b] because it is the composition of
increasing homeomorphisms R — R —]a, b[, 7 — 7+t —]a, b;r + t['. O

2.7. The Zy-action on #X. The map % : ©X — ©X given by [a, b;t]* := [b, a; —t] for a,b € X
and an appropriate ¢ is a well-defined involution of ©X. Note that [a,a]” = [a,a]. Also if
[a,b;t] is the left endpoint of [a,b] (which is identified with [a,a] in €X) then necessarily
t = — (b|zo),, so [a,b;t]* = [b, a; (b|zo),] is the right endpoint of [b,a] (which is also identified
with [a, a]). Therefore the same formula gives an involution x : X — X in the quotient, and
* fixes X pointwise.
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2.8. The Isom(X)-action on ¢X. Isom(X) acts on 2X by

(14) gla,b;t] = [ga, gb;t+ {a,blzo, g 'z0)],
ge ISOIII(X), (CL, b) € X27 te [_ <b|$0>a ) <a|x0>b]'
One checks that if ¢ runs through [— (b|z¢), , (alzo),] then t + (a,blzo, g 'xo) runs through
[— (9b]w0) 44 » (9al20) 4], SO g maps each line [a, b] isometrically onto the line [ga, gb].
This is indeed an action since for id € Isom(X),
id [a, b;t] = [id a,id b;t + (a, b|xe, id xo)] = [a, b; 1]
and for f, g € Isom(X),

f(g la, b; t]]) = fga, gb;t + <a, b|x0,gflx0>]]
= [fga, fgb;t + <a, b|zo, g_1x0> + <ga, gb|zo, f_1$0>]]
= [fga, fgb;t + <a, b|zo, 971$0> + <a'a blg o, 971f71370>]]
= [fga, fgb;t + {a,blzo, g7 f x0)]
= [fga, fgb;t + (a,blzo, (fg)'x0)] = (f9)[a, b;1].
Since g sends the left endpoint of [a,b] to the left endpoint of [ga, gb], and similarly for the

right endpoints, the above action descends to an action on X, given by the same formula (14),
and therefore to an action on ®X.

Lemma 6. Let X be an arbitrary metric space.

(a) The Isom(X)- and R-actions on X commute.

(b) The Isom(X)- and Zq-actions on ©X commute.

(c) The Zy-action anticommutes with the R-action on X :
(rtz)* = (—r)Tz* forz € X andr € R

(d) All the three actions on ®X map lines onto lines and are independent of xo. The Zo-
and R-actions fir X pointwise.

(e) The Isom(X)-action on X is an extension of the Isom(X)-action on X.

Proof. (a) The difficulty is that the Isom(X)- and R-actions are defined with respect to dif-
ferent parametrizations, [-,-;-] and [-,-;-]’, respectively. But the relation (7) between the
two parametrizations and the shift invariance of ¢ will suffice for the proof. Pick any point
[a,b;t] € X and g € Isom(X) and denote s := (a,b|zy, g 7). By direct calculation, if
(c, B) are the endpoint coordinates of (a,b), then (o + s, 5 + s) are the endpoint coordinates
of (ga, gb). Hence for r € R and g € Isom(X),

rt (g [a, b; t]]') =rt (g [a, b; [, B; t]]]) =r*[ga, gb; 0'|c, B;t] + 5]

=1"[ga, gb;0'[a + 5,8+ s;t + s]] = 77 [ga, gbs t + s]' = [ga, gbs 7 + ¢ + s’
= [ga, gb; &' + s, B + s;7 + t + s]] = [ga, gb; '[a, B; 7 + t] + 5]

=gla, b0, B;r +t]] = g[a,b;r +t] = g(r*[a, b;t]').
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(d) The involution x is independent of xy because for another z; € X, by the change of
basepoint formula (13),

la, b; 7], = [a, b;7 + (a, b|z1, 20)];, = [b,a; —r — (a, b|z1, 20)] s,
= [b,a; —r — {a, b|z1, o) + (b, a|xo, x1)]z, = [b, a; —7]4,-
Similarly, one checks using (13) and the Isom(X)-invariance of the double difference that

gla, b;rle, = [ga, gb;r + {a,blz1, g7 21)]a,,

i.e. the Isom(X)-action does not depend on the choice of zy. For the R-action, use (13) and
the shift invariance of €' to prove r*[a, b; t]s, = [a, b;7 + ],
(b), (c), (e) and the rest of (d) directly follow from definitions. O

2.9. Projecting X to lines in ®X. Our metric join construction will work for an arbitrary
metric space, but for inspiration consider first the classical hyperbolic space H", or more gener-
ally, a CAT(—1)-space. Let a,d’,b,b' € OH" and denote [b, b'|a] the nearest-point projection of
a to the geodesic from b to &'. Then the double difference (a, a’|0/, b) indeed makes sense when
a,a’,b,b' are in the boundary of H", and it equals the directed distance from [b, ¥'|a] to [b, 0 |a’]
along the geodesic from b to ', or, symmetrically, the directed distance from [a, a'[b] to [a, a'|V]
along the geodesic from a to o’ (see for example [3, 1.3]). We will use this observation in the
constructions that follow (though the endpoints of geodesics will be in the metric space rather
than in the ideal boundary).
Again we fix a basepoint zy € X.

Definition 7. Let a,a’,b € X. The coordinate of the projection of b € X to the line [a,d'] C 8X
is {a,d'|b)y := (a,d'|b,zo) and the projection of b to the line [a,d'] is [a,d'|b] := [a,a; (a, d’|b)].

Since [a, '] is identified with an interval in R, (a, a’|b) is essentially the same thing as [a, a’|b].
We only use two different notations to emphasize that {(a, a’|b) means a real number and [a, o’ |d]
represents a point in the metric space [a, a'].
The parametrization [a, a’ ;-] and the above definitions are chosen so that in particular,
la,d'|a] = [a,d’; {a,d'|a)] = [a,d"; (a,d'|a, zo)] = [a,d'; — (d'|zo),] = a

(recall that we do not distinguish between a € X and the left endpoint of [a,a’] C 8X) and
similarly [a,a'|a’] = a', that is @ and o' project to themselves. Note also that [a,d'|zo] =
[a,d'; {a,d'|z9)] = [a,a’;0]; in other words, the basepoint z, always project to the “origin”
[a,a’;0] of [a,d].
The following lemma gives an equivalent description of the projection.
Lemma 8. For a,a’,b € X, [a,ad'|b] is the unique point ¢ in [a,d’] that satisfies
la —c| —|c—d'| =d(a,b) — d(b,a).
Proof.
|a — [a,a'|b]| = |[a, d'|a] — [a,d'|p]| = | {a,d'|a) — {a,d'|b} | = | {a,d'|a,b) | = (a'|b),,
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and similarly, ||[a, a'|b] — o | = (a|b} ,, hence

a'’

la — [a,d'|b]| — |[a, a'|b] — o'| = (a'|b), + (alb), = d(a,b) — d(d’,b).

For any a,a’,b,b' € X,
(a,d'|b'y — {(a,d'|b) = (a,d'|V/, z0) — (a,d|b, z0) = {a,d' |V, D),

i.e. the meaning of (a,d’|l/,b) now is the difference of the coordinates of the projections of b’
and b to [a,a'].
Lemma 9. (a) The projection map [-,-|-] is independent of the choice of basepoint xy.

(b) [-,-|-] s Isom(X)-invariant, i.e.

gla,d'|b] = [ga, gd'|gb] for a,d',be X, g € Isom(X).
(c) The projection map relates to the Zy-action on X by the formula
[a,d' |b]* = [d,alb], a,d',be X.
Proof. (a) and (b) follow from Lemma 8, and (c) follows from definitions:
[a,d'[b]" = [a,d'| {a,a'[b) " = [a, a] — (@, a'[b)] = [a',a| {a’, a|b})] = [d’, al?].
U

2.10. Projection and change of basepoint. The change of basepoint formula (13) imp-
ies that [a,b;0],, = [a,b;{a,blz1)] = [a,blz1]. In other words, [a,b;];, is the isometric
orientation-preserving reparametrization of [a, b] whose origin [a, b; 0], is the projection of z;
to [a, b].

3. THE METRIC d, ON ®X.
3.1. The cocycle 5* in 8X.

Definition 10. Let X be any metric space. Foru € X and x = [a,d’; s] € X, where a,a’ € X
and s is appropriate, let L(u,z) := (ala'), + |s — (a,d'[u)| (see Fig. 1).
Forue X, z,y € 8X, let Br(z,y) :=l(u,x) — l(u,y).

This gives a function 3% : X x (#X)? — R of three variables (u, z,y). The definition of £ mimics
the case of a tree: if the imaginary triangle {u,a,a’'} was degenerate to a tripod, then £(u, x)
would be exactly the distance between u and z. Note also that when z € X, ¢(u, z) = d(u, x),
so the restriction of 3% to X x X? is the distance cocycle: 83(z,y) = d(u,z) — d(u,y).

Theorem 11. (a) The above functions £ : X x (8X) — [0,00) and *: X x (¢X)? - R
are well-defined, independent of xy, and Lipschitz in the first variable u € X for each
fized (z,y).
(b) B satisfies the cocycle condition BX(z,y) + B (y, z) = Bi(z, 2).
(c) B is Zo-invariant in each variable: B)(x,y) = B (x*,y) = Br(z,y*).
(d) B* is Isom(X)-invariant: By, (97,gy) = By (v, y) for g € Isom(X).

u
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RN D

FIGURE 1. {(u,x).

Proof. (a) It suffices to show (a) for £. Recall from section 2 that X is a quotient of ©X, that
is each x € X C X can be represented as [a,d’; s| in many ways. It is to be shown that the
formula for ¢ does not depend on the representations of x € X.

Assume [a, z; s] is the right endpoint of [a,z] C ©X and s is appropriate, then necessarily
s = (al|zg),. [a,x;s] and [z, z;0] represent the same point in X C &X.

U(u, [a,z; 5]) = (alz), + | (alwo), — (o, z|u) | = {alz), + | (@, 2|z, 20) — (a, x|u, z0) |
= (alz), + [ (@, 2|z, u) | = (alz), + (alu), = d(z,u) = (z[2), + |0 — (z,z|u) |
= l(u, [z, ; 0]),

so / is well-defined on the level of the quotient ®X.
s is the zy-coordinate of z in [a, '], then by (13) for another basepoint z;, the z;-coordinate
of z is s + {a, a'|zg, z1). The identity

|s = (a, a'lu, zo) | = |(s + (a, a'|xo, 21)) — (a, a'|u, 1) |

shows that ¢ is independent of x.

By Lemma 8, £(u, z) is uniquely determined by the distances between points u, a, o, [a, a'|u]
and x. These distances are preserved under isometries of X, hence ¢ is Isom(X)-invariant.

By the triangle inequality,

6w, ) — £(v, z)| = [(ala’), — (ald),| + |[s = {a, a'lu)| — |s = {a,d'|v)]|
< d(u,v) + [(a, d'|v) — (a, a'|u)| = d(u,v) + (g, a'|[v, u)| < 2d(u, v),
so £(u, x) is Lipschitz in the variable u.

Parts (b) and (c) of the lemma are straightforward from definitions, (d) follows from defini-
tions and the change of basepoint formula (13). O

Lemma 12. Let u,a,a’ € X, x = [a,d’;s], y = [a, d';t] with appropriate s and t, then

(a) |ﬁqf($7y)| < |5 - t| < d(av a'l)7 ,B;(x,y) =s—1,
(b) |ﬁ1§(aa a'l)| < d(a, a',)7 ﬂ;(aa a',) = _d(a'a a,)'
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Proof. From the definition of 5%,
Bulz,y) = |s — (a,d'[u) | = [t = (a,d'|u) | < |s — ] < d(a,d'),
Balz,y) = [s = (a,d'|a) | = [t = (a, d'|a} | = (s — (d'|mo),) — (£ = (d'|mo),) = 5 — L.
If z =a and y = o, then s = — (d'|zo), and t = (a|zy),, s0

Bula,a’) < |s —t] = | = {a'|xo), — (alzo) | = d(a,d),

Bala,d') = s —t = = (d'|z0), — (alzo)y = —d(a,d).

U
3.2. The pseudometric d* in ¢X. For z,y € ¢X define
(15) d*(z,y) := sup [B;(z,y)|-
ueX
Theorem 13. (a) The function d* above is a well-defined Isom(X)-invariant pseudometric

on X independent of xg.
(b) The inclusion of each line ([a,b],|-|) — (8X,d*), a,b € X, is an isometric embedding.
(c) The canonical embedding (X,d) — (8X,d*) is an isometric embedding.

Proof. (a) Let x = [a,d'; s], y = [b,V; t] for appropriate s and ¢. By the cocycle condition and
Lemma 12,

1B, y)| < 1Bi(x, a)| + |8;(a, b)] + [B5(b, y)| < d(a,a’) + d(a, b) + d(b, V)

for all u € X, so d*(z,y) € [0, 0).

The product (a|a’), is independent of z; because it is expressed in terms of the metric d,
the projection [a, a’|u] is independent by Lemma 8. The quantity |s — (a, d'|u) | is the distance
between z and [a,d|u] in [a,d’], so it is independent of o, and similarly for all the terms
in the definition of 8%, so this shows the independence of *. The same argument provides
Isom (X )-invariance of d*.

Pick any triple z,y,z € X and any € > 0. By the definition of d*, there is v € X such that
d*(z, z) —e < |B(z, z)|, therefore

d*(z,2) < [Bi(z, 2)[ + & < [Bi(z,y)| + [Bi(y, 2)| + & < d"(z,y) + d"(y, 2) + &

Since this holds for each € > 0, the triangle inequality for d* follows. Since 5)(x,z) = 0 for all
u € X, then d*(x,z) = 0, so d* is a pseudometric.

(b) If z and y lie on the same line [a,d’] in gX, then z = [a,d';s] and y = [b,b';¢] for some
appropriate s and ¢t. By Lemma 12(a), d*(z,y) = |s — t|.

(c) If a,b € X, then by part (b), d*(a,b) equals the length of the interval [a,b]. But [a,b] was
chosen so that its length is d(a, b). O
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3.3. The metric d, = d on ®X. Define a function ed : (¢X)? — [0, 00) by

o0 €7|T|

(16) (o) = [ drar) i nyesx,
—0oQ

where r* comes from the R-action on X described in 2.6. For simplicity we will use the

notation d, instead of ed.

Theorem 14. The function d, above is a well-defined Isom(X)-invariant metric on X inde-
pendent of the choice of xg.

Proof. By Theorem 13(b), d* induces the original topology on each line, therefore by the triangle
inequality for d*, the restriction of d* to each product [a, a'] x [b, ¥'] is continuous. By Lemma 5,
for fixed z and y, d*(r*x,r"y) is continuous in r. First assume z,y € *X. By Lemma 5 and
Theorem 13(b), the R-orbit maps R — (X, d) are non-expanding, hence

(17) 0 < d(rfz,rty) <d*(rfaz,z) + d*(z,y) + d*(y,ry) < d*(z,y) + 2|r|

for all r € R If z € X, then d*(r*z,z) = d*(z,z) = 0, and the same inequality as above
holds, and similarly for y € X. This inequality implies that d.(z,y) is a well-defined number
in [0, 00) for all z,y € ©X. The triangle inequality, the Isom(X)-invariance and independence
of zy follow from those of d*. Also, d.(x,z) = 0.

It remains to show that x # y implies d,(z,y) > 0. Pick any = € [a,d'] and y € [b, 0] with
x # y. If a # b, then, by Theorem 13(c), d*(a,b) > 0. Since r*z — a and r Ty — bas r - —oo,
there exists rqg € R such that for all r < rg,

d*(rfz,a) <d(a,b)/3 and  d*(r*y,b) < d(a,b)/3,
hence d*(rtz,r"y) > d*(a,b)/3 and

To 67|T| 70 67‘7“
d.(z,y) > d*(rfz,rty) dr > d*(a,b) dr > 0.
- 2 . 6
The case o' # b’ is similar, so now we can assume that a = b and ¢’ = ¥/, i.e. z and y lie on
the same line [a,a’], and z # y. For all r € R, r*z and z*y lie on the same line [a,a'] and
rtx # rty; then by Theorem 13(b), d*(r*z,r*y) > 0. Since d*(r*z,r"y) is continuous in r,

0 l
d.(z,y) :/ dx(r+x,r+y)e2 dr > 0.

o

g

Remark. (16) resembles the formula used by Gromov in [27, 8.3.B]. He starts with the set
of all bi-infinite geodesics in a hyperbolic metric space X, i.e. each geodesic comes equipped
with an embedding into X. Given two points £ and y lying on two bi-infinite geodesics, one
can view them as lying in X, measure the distance between them and apply (16) to define a
metric on the disjoint union of all geodesics. In general there are many geodesics connecting
points a,b € 0X, and the metric is used to identify all of them into one by a quasiisometric
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homeomorphism (not necessarily an isometry). In that construction, R does not necessarily act
on lines by isometries.

In the construction of this paper we start with an arbitrary metric space X. Geodesics are
of finite length and are abstractly assigned to each pair of points; no embedding into the space
is given. (There might be no embedding at all, the space may be even discrete!) This is why
it was important to construct d* first, and this was done using 8* and the double difference
in X. The advantage of this formal approach is that for each pair a,b € X there is a canonically
associated line in X that depends continuously on a and b. Moreover, we will see that when X
is a hyperbolic complex, this construction extends continuously to the ideal boundary of X so
that R acts by isometries on each ideal line. We will also define and use the R-action on both
finite and infinite lines.

Theorem 15. For each r € R, the map r* : (8X,d,) — (8X,d,) is a bi-Lipschitz homeomor-
phism with constant el™l.

Proof. For all v,r € R, e "7l < elrl=I*l = ¢lrle=I*l hence using the substitution v = u + 7,
o

—u|
d.(rtz, rty) :/ dx(u+r+x,u+7“+y)e2 du

— 00

o —|ul 00 —|v—r|
:/ d((u+r)tz, (u+r)+y)62 d“:/ dx(”+$’”+y)e 2 dv

—0o0 —0o0

and similarly for the inverse map (—r). O

3.4. Relation between d* and d,. Define a function ¢ = px : ¢X — X by

S
(18) o(z) ::/_ rtz 5 dr.

o0

Here z € [a,d'] and we view [a, '] as a subinterval [a, /] C R as in 2.2 to make sense of the
integral.

Theorem 16. Let X be any metric space and define d*, d, and ¢ as above.

(a) ¢ is a well-defined canonical surjection (8X,d,) — (8X,d*) whose restriction to each
line ([a,d'],d,) is an isometry onto ([a,a'],d*). In particular, each line [a,ad'] in X
can be parameterized to become a d,-geodesic from a to a'.

(b) The restriction of ¢ to X is the identity map (X,d,) — (X, d*), and it is an isometry.

(¢) di, d* and d coincide on X, i.e. the canonical embeddings (X,d) — (¢X,d*) and
(X,d) — (8X,d,) are isometric.

Proof. (a) Each ¢(x) is well-defined as a real number because [a, a’; -]’ is non-expanding.
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If z € [a,d'] N X, then R fixes = and

o0 —|r|
ga(:v):/ x€2 dr =z,

—0oQ

so ¢(x) is well-defined and equals z, regardless of the choice of [a,a']. Therefore ¢ is identity
on X.
Now we assume z € [a,d'] \ X, i.e.  €]a,d'[ and a # a'. Let the function [a,d’;-]" : R —
[a,a'] be the smooth-out of [a,d'; -], i.e.
—r|
e

(19) [a,d; s]” ::/ [a,a’;r + s]' 5 dr.

Since a # d', then [a,d’;-]' : R — [a, '] is a homeomorphism, and by definition ¢|[a,'] €quals
the composition [a, a’;-]" o ([a,a’;]') ™. By Lemma 2 applied to the function [a, da’; ], [a, a; -]"
is a homeomorphism from R onto [a, a'], therefore ¢ maps [a, a'] homeomorphically onto itself.

Pick any z,y € [a,d'] with z < y. By Lemma 5, 7tz < rty for all € R, hence ¢(z) < ¢(y).

By Theorem 13(b),

00 —|r| 00 —|r|
e e
(o) o) = o) —ele) = [ (ry-rto) Sdr = [ atrtn) S dr = (o),
hence ¢ : ([a,d'],d,) — ([a,d'],d) is an isometry.
(b) In particular, d*(a,a’) = d*(¢(a), ¢(a')) = d.(a,a’) forall a,a’ € X, so the restriction
¢ (X,d,) = (X,d) is an isometry.
(c) follows from (b) and Theorem 13(c). O

Lemma 17. For all a,a’ € X,

(a) the identity map ([a,a’],d”) — ([a,d'],d.) is a homeomorphism and
(b) if a # d, then [a,d; ] : R — ([a,d'], d.) is a homeomorphism.

Proof. (a) If a = d, then the statement is obvious. Now assume a # a'. Consider the
composition

R ST ([a,d],d) 2 ([a,d'],d.) 5 ([a, ], d7),
where ¢ is the isometry from Theorem 16(a). The first map is a homeomorphism, and one
checks that the composition is given by the formula

e~

||
s+—>/|[a,a';r+s]]' 5 dr,

hence it is the map [a,a’;-]"” in (19), which is, again, a homeomorphism by Lemma 2 applied

to the function [a, a'; -]’. This implies that ([a, '], d*) 4 ([a,a'], d.) is a homeomorphism.

(b) The map [a,a’;-] : R — ([a, a'], d¥) is the composition of homeomorphisms

R ([a,a'], @) 4 ([0, d], d.).
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Lemma 18. For allz,y € X, |d.(x,y)—d*(z,y)| < 2. In particular, d, and d* are * equivalent.
Proof. By (17),

= e = ~Ir
doy)= [ dtary < [ (@) 2 G dr = do ) +2

o0 o0 2
Similarly,
o —Ir| oo —ir|
di(z,y) =/ dx(r+x,r+y)e2 dr 2/ (d*(z,y) —2|7“|)62 dr = d*(z,y) — 2.

g

3.5. The functor ® and embeddings into geodesic spaces. # is a functor on the category
of topological spaces: to every topological space X it associates the topological space ®X.
¢ is also a functor on the category of metric spaces: to every metric space (X, d) it associates
the space X with the metric ed as in 3.3. We are intentionally vague about the choice of
morphisms here — it is an interesting educational question how & behaves under continuous,
Lipschitz and other maps, but this will not be addressed in this article. At the very least, since
the construction is canonical, & is functorial with respect to isometries.

As an illustration for the use of functor & we prove the following fact.

Proposition 19. Every metric space (X,dx) isometrically embeds into a geodesic metric
space (Y,dy). Moreover, Y can be chosen so that each g € Isom(X) extends to an isome-
try g of Y, and the map Isom(X) — Isom(Y"), g — ¢', is a group monomorphism.

Proof. Define ¢°X := X and inductively #'X := (¢! X). Then ¢'X is a metric space with
the metric d; := ¢'dx defined inductively from the metric on X. By Theorem 16(c) there are
canonical isometric embeddings #~!X < ‘X therefore the union

o

YV:i=e%(X):= U@iX

i=0
can be given a metric dy which restricts to d; on each ¢'X. By Theorem 16(b), each pair of
points a,b € 1 X is connected by a geodesic in X, so Y is geodesic. By Theorem 14, each
isometry g of X induces an isometry of ®X. This gives a homomorphism Isom(X) — Isom(#X)
which is clearly injective. Inductively, g extends to an isometry of *X, giving a monomorphism
Isom(X) < Isom(e*X) for each 7, and therefore to an isometry of Y giving a monomorphism
Isom(X) < Isom(Y). O

4. THE METRIC d, AND THE TOPOLOGY OF *X.

The goal of this section is to prove the following.

Proposition 20. Let (X, d) be any metric space. The metric d, from 3.3 induces the original
topology on the open symmetric join (X described in 2.4. Equivalently, the map from 2.4
viewed as

I I (XP\A) x R — (%X, d,)
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is a homeomorphism, where A is the diagonal of X?2.

The proof requires some technical arguments, the reader might want to skip this section at
first reading.

Lemma 21. For all z,y € [0,00), |e ¥ —e*| < |y —z.

Proof. One easily checks that 1 — e* < —z for all z. We can assume x < y. Then |e™¥ —e™%| =
efl—e"Y < |[l-e"Y=1-e"Y<y—ax=y—uz| O
Lemma 22. Let (X,d) be any metric space. Then for all a,a’,b,b' € X and s,t € R,

(a)  d*([a,d’; ], [b,0';t]) < |t — s+ 2d(a, b) + 2d(a’, V),
(b)  d*([a,a; 8], [b,b';1]") < |t — s| + 4d(a,b) + 4d(d', V'),
(¢)  di([a,d;s],[b,0;t]) < |t —s| +4d(a,b) + 4d(a', V).

Proof. (a) For any u € X, by the definition of 8* and triangle inequality,
Balla, d'; ], [b, b5 ¢D)| = | {ala’), + |5 = (a, d'|u)| = (BI0'),, = [t = (b, V'|u)] |
< |Is = {a, a'lu)| = [t = (b, 6'[w)| | + [{ala’), — (B]0'),]
< |s = (a,d'lu) =t + (b, V'u) | + [{ala’), — (B]B"),]
< [t = s| + [{a, a'[u) — (b, '|u)| + [{ala’), — (bIV),,|
< [t = sl + [{a, blu)| + [{a’, 0'u)| + [(ala’), — (bla’),| + [(bla’), — (BIb'),]
< |t — s| + 2d(a,b) + 2d(a’, V).

Then by the definition of d*,
d*([a, d’; s], [b, Vs 2]) = sup |B;([a, a’; s], [b, 5 ¢])| < [t — 5] + 2d(a, ) + 2d(a’, V).
ueX
(b) Recall from 2.2 that [a,a'] is a copy of the interval [o, o/] C R, where o := — (a/[z¢), and

o = (a|zy),. Similarly, [b, V'] is a copy of [8, '] C R where 3 := — (b'|z¢), and 5’ := (b|z¢), -
By the definition of (-|-). and triangle inequality,

(20) 18— al =[{a'lzo), — (|20}, | < |d(a,a’) = d(b,0)]/2
+|d(a, zo) — d(b, x0)| /2 + |d(V, z0) — d(d', z0)|/2 < d(a, ) + d(d', V),

and similarly |8’ — o/| < d(a,b) + d(a', ). Tt follows from the definition of # that
(21) 1018, 8 1] — Ola, o ]| < max{|8 — al,|8' — o[} < d(a,b) + d(d',}").
Using Lemma 3 we denote

A:=0o,d;t] = 0a,o/;t] + (e —e /2 and
B:=018,85t] = 08,851+ (7" = e /2,
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then by (21), Lemma 21 and (20),
1B — A| < |0]8,8';t] — 0o, o5 1]| + |e_|t_ﬂ‘ — e"t_a“/Z + ‘e"t_a'| — e_‘t_ﬂ'||/2
<d(a,b) +d(a" b))+ ||t — Bl — [t —af|/2+]|[t — | — [t — B|/2
<d(a,b) +d(a, V) + |8 —a|/2+ |8 — '|/2 < 2d(a,b) + 2d(d', V).
By (7), part (a) and the above inequality,
d*([a, a; 1], [b, 05 1]') = d*([a, a'; 0'[cr, 5 4], [b, b5 08, B'; ]])
= d*([a,a'; A], [b,0'; B]) < |B — A| + 2d(a,b) + 2d(d’, V') < 4d(a,b) + 4d(d’, V).
Since the map [a,d’;]' : R — ([a, d'], d¥) is non-expanding,
d*([a,d'; s]', [b,85t]) < d*([a,d’;s]', [a,d’;t]") + d*([a, a'; 2], [b, 0'; 2]')
< |t — s| + 4d(a,b) + 4d(a’, ).
(c) follows from (b) and the definition of d,:

o0

d.([a, s 5T, [b, ¥ 1]') = / d*(a, ;7 + 5T, [b, 057 + 1]

—0o0

e_|r|

dr

e_‘”

dr

< /°° (10 +1) = ( + )| + 4d(a, b) + 4d(d’, )

= |t — s| + 4d(a, b) + 4d(a', V).
U

Lemma 23. The function w : [0,00) — [0,00) defined by w(T) := 7 + 2e~7/2 — 2 is a homeo-
morphism. The obvious extension w : [0, 00] — [0,00] is also a homeomorphism.

Proof. This follows from the facts that w(0) = 0, g_w(T) > 0 for 7 > 0, and w(r) — oo as
T

T — 00. O

Lemma 24. For all z,y € X, d*(z,y) < w(d.(x,y)), where w is from Lemma 25.
Moreover, for all z,y € ®X and r € R, d*(r*z,ry) < w™(eld.(z,y)).

Proof. Denote 7 := d*(z,y). Since the map [a, b; -]’ is non-expanding, we have
d*(rfx,rty) > d*(z,y) — d*(x, 77 z) — d*(y,rTy) > d*(z,y) — 2|r| = 7 — 2|7
for all » € R, then
= - Irl /2 e—Irl
(22) d.(z,y) = / d*(rtz,ry) 5 dr > / (1 —2|r|) 5 dr

0o —7/2

2 2= () =l e)

Since w is increasing, d*(z,y) < w™'(d,(z,y)) for any = and y in eX. Applying the inequal-
ity (22) to r*z and r*y and using Theorem 15,

w(d*(rtz,ry)) <do(rtaz,rty) < ed(z,y),
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therefore d*(r*z,rty) < w™'(elld,(z,y)). -

Lemma 25. Let a € X and x; = [a;,al;s;]" be a sequence in X such that d.(z;,a) — 0 as
i — 00. Then d(a;,a) — 0 or d(a},a) — 0 as i — oco.

Proof. Suppose not, then after taking a subsequence there exists ¢ > 0 such that d*(a;,a) =
d(a;,a) > ¢ and d*(a},a) = d(a},a) > € for all 7. Since d.(z;,a) — 0, then by Lemma 24,
d*(z;,a) — 0, so extracting a subsequence again we can assume that

d*(z;,a) <e/4  for all i.
For each i there is a point y; = [a;, a}; t;]" such that
t; > s; and d*(z;,y;) = €/2.
In particular,
(23) d(a,y;) > d(x;,y;) — d*(x,a) > /2 —e/4 =¢e/4.
Let z € [a;, a;] represent an arbitrary point that lies between z; and y;, then
d*(a,z) < d*(a,x;) + d*(z;,2) < e/d+¢/2=3¢/4, hence
d*(z,a;) >e/4 and  d*(z,a;) > e/4.
Take € > 0 sufficiently small so that
e<ef/d  and e<(1—e79)/2.
By the above,
(24) d*(z,a;) >e/4>€ and  d*(z,a;) >e/4>€  foralli.
Let o; < o} be the end-point coordinates of [a;, a;]. Since
o — a; = d¥(ay, a;) = d*(a;, ;) + d*(z;, af)
> (d*(ai,a) — e/4) + (d(a}, a) —e/4) > 2(e — e/4) > ¢,
we have
(25) 0<e<(l—e)/2<(1—e*%)/2  foralli.

(24) and (25) show that Lemma 4 applies to the map [a;, a};] : R — ([a;, a], d*), therefore
the derivative of this map in the interval [s;, ¢;] is at least e. Then
(@i, yi) _ £
€ 2
Denote R :=¢/(2¢) and r; :=t; — s; € [0, R], so we have y; = r;Tx;. By Lemma 24,

d*(a,y;) = d*(a,r; z;) = d*(rita, ritz;) < w_l(e”d*(a, acz)) < w ! (eRd*(a, acz)) — 0.
11— 00

li—si <

This contradicts (23). O
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Proof of Proposition 20. Recall from 2.4 that the topology on xX C @X is induced by the
bijection J-, ;[ (X?\ A) x R — #X. Since the set (X?>\ A) x R is open in X? x R, the
topology of (X?\ A) x R is locally the product of the topologies on X, X, and R. Therefore
a typical neighborhood of z =]a,a’; s[' in X is of the form N(z,¢) :=]|B,, B.; I.[', where B,
and B! are disjoint open balls in (X, d) of radius € centered at a and o', respectively, and
I, =(s—¢,5+¢) CR

Our goal is to show that the identity map xX — (xX,d.) is a homeomorphism. Let
y =]b, V'; t[' represent an arbitrary point in N(z,¢), then |t — s| < g, d(a,b) < &, d(d', V) < ¢.

Given any € > 0, we let ¢ := ¢/9, then Lemma 22(c) implies

do(z,y) = d.(Ja,a'; s[', 16,0 t[') < |t — s| + 4d(a,b) + 4d(a',b) <e+4e+4e =€

i.e. N(z,e) C By,(z,€). This shows that the identity map #X — (%X, d,) is continuous at z.

Suppose that the inverse identity map (xX,d.) — *X is not continuous at « =]a,a’; s[',
then there exist a product neigbourhood N(z,¢) =|B., BL; I.[' of x and a sequence {z;} such
that

(26) di(ziyz) — 0 and  z; € (*X)\ N(z,¢).

71— 00
We have x; =]a;, a}; s;[' for some a;,a; € X and s; € R
Since d,(z;, ) — 0, using Lemma 24, for any j > 0 there exists ¢ = i(j) such that
(27) do(j mi, jT7) <w H(eVdu (@i, @) < 1/5.
Therefore the subsequence {x; := w;(;)} satisfies d.(j*x;, j7x) = 0as j — oco. By Lemma 17(b),
d«(jTz,ad’) = 0 as j — oo, hence
du(j7xj,0") < du(§7 2,57 2) + du(j7w,0") — 0.

j—ro0
Then by Lemma 25 applied to the sequence {j*z;} we have
(28) aj—a  or a;—a  inX
By a similar argument using (—7)* in (27) and passing to a subsequence we also deduce that
(29) aj—a or a;—a inX.

Suppose that a; — o' and a;- — a. Since R is compact, passing to a subsequence we can
assume that s; — t for some ¢t € R. Lemma 22(c) implies that

(30)  du(zj, [0, 05t]") = du([ay, a;-; sl [d's a;t])") < |t — s;] + 4d(ay,a’) + 4d(a;-, a) — 0.

J—0o0
(30) and (26) say that x; converges in metric d,. both to z €]a,a'[ and to [a’,a;¢]’. This is
impossible since ]a, a'[ and [d', a] are disjoint.
The only possibility left is that a; — a and a; — a'. After passing to a subsequence we can
assume that a; € B, and aj € By for all j. Since z; ¢ N(z,¢) by (26), we must have [s; —s| > ¢
for all 5. After passing to a subsequence we can assume that

s; — s for some s € [—00,5—¢]U[s+¢,00].
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Then by Lemma 22(c),
di(x5,[d', a5 5]) = du([a;, a}; 55, [d, a5 5]') < |5 — s5] + 4d(ay, a) + 4d(a},a’) — 0.
j—00
Then z; converges in the metric d, both to z =]a, d'; s[" and to [a’, a; 5], which is impossible
since the two points are distinct. U

5. METRIC COMPLEXES AND HYPERBOLIC COMPLEXES.

Suppose X is a simplicial complex and d is any metric on its 0-skeleton X(©). Let P(X(®)
be the power set of X, Each simplex in X is uniquely determined by its vertices, so the
simplicial structure on X can described combinatorially as a collection U C P(X®)) consisting
of finite subsets of X which is subset-closed: U € Y and U’ C U imply U’ € Y. Moreover,
each U € U can be viewed as the convex hull of its vertices, that is each point in the topological
simplex oy corresponding to U is described uniquely as a linear combination

Zaxx where ay € [0,1] and Zaw =1.

zeU zeU

It is easy to check that the formula

(31) d (Z T, Z@y) = ZZaxﬁyd(x,y)

zelU yeU zeU yeU

defines a metric d on X whose restriction to each simplex oy is homeomorphic (even linearly
isomorphic) to the standard simplex of dimension #U — 1. Moreover, the inclusion (X, d) —
(X,d) is an isometric embedding, i.e. d is an extension of d. We will omit ~ from the notation
of extended metric.

5.1. The functor ¥ and the canonical word metric dx. Let X be a simplicial complex
and d be an arbitrary generalized metric on X, X or X©. Denote ¥(d) the result of the
following procedure: restrict d to X® and extend to all of X by linearity formula (31). ¥(d)
is a generalized metric, and ¥(d) is a metric if and only if d is. If the simplices in (X, d) have
uniformly bounded diameters, then the inclusions (X©,d) < (X, d) and (X©,d) < (X, ¥(d))
and the identity map (X,d) — (X, ¥(d)) are quasiisometries.

For any simplicial complex X there is a canonical choice of generalized metric dx, obtained
as follows: take the generalized path metric on X() defined by assigning length 1 to each edge,
and apply functor ¥. dy is a metric if and only if X is connected; we will call it the word metric
on X, since this generalizes the word metrics on groups. In general dy is not intrinsic.

5.2. Metric complexes. We will say that a metric d on X is induced from the O-skeleton if
d = U(d). A metric complex will be a pair (X, d) where X is a simplicial complex and d is a
metric that is induced from the 0-skeleton. Examples:

(0) Any metric space is a 0-dimensional metric complex.
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(1) Let G be the Cayley graph of any finitely generated group with respect to a finite
generating set. Subdivide G if needed to make it a simplicial complex. For any metric
d on G quasiisometric to the word metric, (G, ¥(d)) is a 1-dimensional metric complex,
where W(d) is quasiisometric to d.

(2) Let M be any compact smooth n-manifold with 7 (M) = I'. Its universal cover M has
the distance function d coming from the Riemannian structure, then (M, ¥(d)) is an
n-dimensional metric complex. The identity map (M,d) — (M, ¥(d)) is a [-invariant
homeomorphism and quasiisometry.

(3) Let M be any compact triangulated n-manifold with m1(M) = I'. Let d be any I'-
invariant metric on M quasiisometric to the word metric dy defined in 5.1, for example
the word metric itself. Then (M, ¥(d)) is an n-dimensional metric complex homeomor-
phic to M. The metrics dx and ¥(d) are quasiisometric.

For a metric complex (X, d), Isom(X, d) will denote the group of simplicial automorphisms of
X preserving the given metric d. If d is the word metric dx on X, then we will use the notation
Isom(X) for Isom(X,d). Since dx is canonical, Isom(X) is just the group of all simplicial
automorphisms of X.

5.3. Hyperbolic complexes. First let G be any connected graph. We equip G with the
word metric d which is by definition the path metric induced by assigning length 1 to each
edge. A geodesic in G is an isometric embedding o : I — (G, d) of a closed interval I C R.
Often we will use the same notation for a geodesic and its image. For all a,b € G we denote
Geod(a, b) the set of all geodesics in G connecting a to b, and fix one arbitrary choice of a
geodesic [a,b] € Geod(a,b). When a € G, we assume more precisely that [a,b] is the image of
the isometric embedding [a, b; -] : [0, d(a, b)] = G with [a, b;0] = a and [a, b; d(a, b)] = b; that is
for t € [0,d(a,b)], [a, b;t] is the unique point in [a, b] with d(a, [a, b;t]) = t.

Geodesic triangles have canonically defined inscribed triples: for all a,b, ¢ € G and any choice
of geodesics o € Geod (b, c), B € Geod(c, a), v € Geod(a, b) there are unique a € o, b € 3, ¢ € 7
with

d(a,8) = d(a,3), d(b,a) = d(b,2), d(e,a) = d(c,b).

Equivalently, @ is the unique point in « satisfying d(b,a) — d(a,c) = d(b,a) — d(a,c), and
similarly for b and ¢. It is convenient to think of @ as of a projection of a to a.

A graph G is hyperbolic if it is connected and there exists § € [0,00) so that all geodesic
triangles in G are é-fine: for all a,b,c € G and the inscribed triple @, b, ¢ as above we have

if z € B, y €y and d(a,z) = d(a,y) < d(a,b) = d(a,é), then d(z,y) <.

Each simplicial complex X has the canonical word metric d = dx as in 5.1. A hyperbolic
complex will be a uniformly locally finite metric complex whose 1-skeleton (G, d) is a hyperbolic
graph. Note that it is a part of the definition that X is connected and uniformly locally finite.

Each hyperbolic graph has ideal boundary (see [27, 26, 4] for definitions). Since each hyper-
bolic complex X is quasiisometric to its 1-skeleton G, this defines the boundary 0X := 0G and
the compactification X := X L1 90X.
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We put the generalized metric | - | on R := [—00, o0] by declaring
|too—r|:=o0c0forall reR, |[(£oo)— (Foo)|: =00, [(£oo)— (£o0)|:=0,

and put the topology on R that makes it a closed interval. (This topology is not induced by the
generalized metric.) Now a geodesic in G is a continuous isometric embedding o : I — G of an
interval I C R, where isometry is understood as preserving the distance that can take infinite
values. For example, the map {0} — {a} for any a € 0G is trivially a geodesic in G. Another
example is a geodesic ray in G converging to a € 9G, i.e. a continuous isometric embedding
a:[0,00] = G with a(0) € G and a(c0) = a.

6. THE METRIC d AND THE DOUBLE DIFFERENCE IN X.

For the rest of the paper X will denote a hyperbolic metric complex and we fix a positive
integer 0 such that the geodesic triangles in G are ¢-fine.

The goal of this section is to construct a double difference — a continuous function on quadru-
ples of points in X (Theorem 35). It plays the role of the logarithm of the absolute value of
the classical cross ratio in C U {oo} = 0H?, but is going to be defined in a much more general
setting: both on an arbitrary hyperbolic complex and on its ideal boundary. The double dif-
ference will be defined precisely, rather than “up to a bounded amount”, as often happened for
various notions in hyperbolic groups. First we provide several important auxiliary results.

6.1. The extended metric d. In [31], a metric d was constructed on any hyperbolic group T
It was shown that d is strongly bolic, I'-invariant, quasiisometric to the word metric d, and
satisfies

Theorem 26 ([31]). There exist constants C' € [0,00) and p € [0, 1) with the following property.
Ifa,d',b,0 €T, d(a,a’) <1, and d(b,V') < 1, then

|d(a,b) — d(d’,b) — d(a, 1) + d(a', )| < Cptad).

The above theorem is not enough for the purposes of this paper, and just having a strongly
bolic invariant metric is not enough either. We will show that actually d satisfies stronger
properties (Theorem 32).

Now let X be any hyperbolic complex, and denote G it 1-skeleton with the path metric d.
We will moreover extend the construction in [31] in two ways to provide a metric d = dx which
is more general in the following sense:

e d is defined on all of X , rather than just on a discrete group I'.
e d is invariant under the full isometry group Isom(X), rather than just under T'.
e The Isom(X)-action on X is not assumed to be cocompact.

The construction in [31] utilizes a I'-equivariant choice of geodesic paths p|a, b] in the Cayley
graph, viewed sometimes as a path and sometimes as a cellular 1-chain, from a to b for each
pair (a,b) € I'2. This bicombing pl[-, -] is not good enough for our purposes since in general it
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cannot be chosen to be Isom(X)-equivariant. This problem is fixed by using the 1-chain

p'[a,b] := (#Geod(a, b)) * Z s,

seGeod(a,b)

where Geod(a, b) is the finite set of all geodesic paths in G from a to b, instead of p|a, b] whenever
pla, b] was meant to be a 1-chain (and making no change when p[a, b] was meant to be a path).
Since p'[-, -] is Isom(X)-equivariant, this provides a Isom(X)-invariant metric d on X(©. The
uniform local finiteness of X guarantees that all the arguments of [31] go through with very
minor modifications. (Namely, since the cardinality of balls of radius 76 in X(©) might not be
constant, though bounded above, one needs to change the definition of star(a) [31, p. 100] to

1
star(a) := #B(a.79) Z

xX.
z€B(a,7d)

Then the discussion of [31, p. 111] should be changed as follows. Let wpq,; be the maximum of
cardinalities of the balls of radius 76 in X(*°). Without loss of generality we can assume ' < 3,
then

|star (fo) + awo — star(fy) — o'zo|,

< |star(fo) + axg — Bao|, + | — star(fy) — o'zo + o, + |(B — B)zo|,

S0-p) =g+ G- =20-p <2 (1- ).

The rest of the argument goes through.)

In particular, Theorem 26 still holds for this new metric don X ©), and d is quasiisometric
to d. Finally, let d = dx be the extension of d to all of X by formula (31).

The hyperbolicity constant § and the word-metric d canonically depend on X, and d canon-
ically depends on ¢ and d. This shows in particular that d is Isom(X)-invariant. Recall that
Isom(X) is the group of simplicial isometries of (X, d).

Lemma 27. For a hyperbolic compler X and a simplicial map g : X — X, the following are
equivalent.

(a) g is a simplicial automorphism of X.

(b) g is a simplicial automorphism of X preserving the word metric d on X,

(c) g is a simplicial automorphism of X preserving d on X©.

(d) g is a simplicial automorphism of X preserving donX.

In other words, there is no difference between simplicial isometries of (X, d) and simplicial

A,

isometries of (X, d).

6.2. Now use d instead of d everywhere. From now on we deal with hyperbolic complexes
and we change the notations of 1.1, redefining everything in terms of the metric d: the double
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difference (-,-|-,-) : X* 5> R is

(32) (a,d|b, b') = %(&(a, b) — d(d',b) — d(a, ¥) + d(d, 1))
and the Gromov product is

1, . .
(33) (alb), = (a,c|c,b) = i(d(a, ¢) + d(b,c) — d(a,b)).

With definition (32), Theorem 26 says that there exist C' € [0,00) and p € [0,1) such that
for all a,d’,b,b' € X© with d(a,a’) <1 and d(b, ') <1, |(a,d'[b,t')| < Cpudeh).

From now on the letter d will always stand for the canonical word metric as in 5.1. Define
the corresponding functions with respect to the word metric d:

(34) (a,d|b, ) = %(d(a, b) — d(d,b) — d(a,¥) + d(d’, 1)),

(alb). = (a, clc, b) = %(d(a, ¢) +d(b, ) — d(a,b).

These functions can be partially extended to infinity; the extension is usually not continuous
and is defined up to an additive constant.

Remark. The linearity formula (31) implies that the double difference in X is determined
by its values on the vertices of X. Explicitly, if a = }° auz, o' = >, apz’, b =3 Byy,
b= Zy, Byy' are convex combinations of vertices, then

(35) (a,a'|b,b) = ZZZZ%%@,@, z, 7|y, y) .

Starting from the metric d (rather than from d) on X we define ¢, 8%, the pseudometric d*
and the metric d, on X as in 3.2 and 3.3, i.e. we denote d, := &d (rather than d, := ed).

6.3. Examples of hyperbolic complexes.

(1) As in 5.2(1), the Cayley graph of a hyperbolic group can be considered a hyperbolic
complex with respect to the metric czg.

(2) The universal cover of a compact smooth manifold with hyperbolic fundamental group
with respect to the metric ¥(d) as in 5.2(2), where d is the intrinsic metric coming from
the Riemannian structure.

(3) The universal cover of a compact triangulated manifold with hyperbolic fundamental
group. One can take either the word metric d or the canonical metric d defined in 6.1,
both induced from the 0-skeleton (see 5.2(3)). The two metrics are quasiisometric but
d behaves better at infinity.

6.4. Geodesics and nearest points. “Geodesic” will always refer to the word metric din G =
XU Let a,d',b,b € G, a € Geod(a,d'), B € Geod(b,V'), so that o and /3 are isometric
embeddings of intervals: o : [ — G, 5:J—G. Pick distance-minimizing vertices ag € o and
bo € B, i.e. such that d(ag, by) = d(c, 3). Choose the parameterizing intervals I and J of « and
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B containing 0 so that a(0) = ag, a(—M) = a, a(M') =d, 3(0) = by, B(—=N) =b, B(N') =¥V
for some non-negative (possibly infinite) M, M', N, N'.
Lemma 28. (a) With the above notations, if d(«, §) > 25, then for alli € I and j € J,
d(e(z), B(4)) = lil + d(e, B) + |j] — 66.

In particular, d(a,b) > d(a, ag) +d(ag, by) + d(bg, b) —65. Now assume a = a' = ag, and d(ag, B)
and j € J are arbitrary. Then

(b) d(ao, B(7)) = |j| + d(ao, B) — 26,
(¢) d([ao, bol, B(5)]) > |7] — 24,
(d) d([ao, 0], B(5)) > j — 3.

Proof. (a) From symmetry, it suffices to show the lemma when ¢ > 0 and j > 0. Draw geodesics
[a(7), 5(7)] and [ag, 5(j)], and inscribe triples of points in the triangles {ao, a(7), 3(j)} and
{ao, 5(j),b0} as shown on Fig. 2. Pick v' € [ay, by] with d(ag,v") = d(ap,v1). The vertex v, is

bl

FIGURE 2. Ilustration for Lemma 28.

d-close to vy, and therefore to a. If d(ag,v") > d(ag,w;) was true, then v' would be J-close to
bg, so d(«a, B) < 26, which contradicts our assumption. Therefore d(ag,v") < d(ag, w;). It is an
easy exercise to see from the figure that d(bg, ws) = d(by, w1) < 0 and d(ag,v1) = d(ag,ve) =
d(ap,v") < 26 (otherwise [ag, by] could be shortened), therefore

d(a(i), B(5)) = d(a(i), v2) + d(v1, B(7)) = d(a(i), v2) + d(v',w1) + d(we, B(7))
> [d(a(i), ag) — 26| + [d(ag, bo) — 38] + [d(bo, B(4)) — 6] =i+ d(v, B) + j — 60.

(b) Since a = a' = ay, we also have a = ¢’ = ay = v; = vy = v3 = v/, and the inequality follows
as in (a) by a similar, and simpler, argument.

(c) From symmetry it suffices to show the inequality in the case j > 0. If j — 26 < 0 then
the inequality is obvious. Now suppose to the contrary that there exists j > 26 and a point
x € [ag, bo] such that d(z, B8(j)) < j—20. If d(by, z) < d(bo,w1), then d(z, 5(j)) > d(bo, B(j)) —
d(bg,z) > j — 6 which contradicts the assumption. Then d(by,z) > d(bg,w;), so by the fine-
triangles condition, there exists y € [ag, 3(j)] with

d(ao,y) = d(ag,z) < d(ag, ws) and d(z,y) <.
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Then

d(z, (7)) > d(y, B(§)) — & > d(ws, B(j)) — 6 = d(ws, B(5)) =6 > j — 26
provides a contradiction.
(d) If j—38 < 0, then the inequality is obvious, so we assume j > 340. From (c), d([ao, bo], 5(j)) >
|7] — 28 = j — 26, and since § is geodesic, d([bo, b], 3(j)) = |j| = j. Since [ay, b] lies in the 6-
neighborhood of [ag, by] U [bo, b],

d([ao, b], (7)) = d([ao, bo] U [bo, b], B(j)) — 6 = min{d([ao, bo], B(7)), d([bo, V'], B(4))} —6 = j — 36.
0

Given y € G and geodesics o and « in G, v is called a distance-minimizing geodesic from
y to « if  starts at y, terminates at a point x € «, and for every z € v, d(z,z) = d(z, ).
A distance-minimizing geodesic exists for every pair (y, «). The set of all such terminal points
over all distance-minimizing geodesics from y to «, denoted np[ca|y], is called the nearest point
projection of y to @. When o = [a,a'] we will use the notation np[a, a'|y] for np[a|y]. For
example, if @ € 0G then {0} — {a} is the only distance-minimizing geodesic from «a to [a, a'],
so npla, a'|a] = {a}.
Given two geodesics o and 3 in G, 7 is called a distance-minimizing geodesic from « to 3 if v
is a geodesic in G, 7 starts at a point = € o, terminates at a point y € 3, and for every z € 7,
d(z,z) = d(z,«) and d(z,y) = d(z,5). Such a pair (z,y) € a x § will be called a distance-
minimizing pair for (a, 3). Every pair (a, ) of geodesics in G admits a distance-minimizing
pair.
Lemma 29. Let b,b' € G, 3 € Geod(b,V'), z,y € G, 2’ € np[B|z], ¥ € np[Bly] (see Fig. 3).
(a) If d(z',y") > 26, then d(z,y) > d(z,2') + d(2',y') + d(y', y) — 66.
(b) For any positive integer n, if d(x,y) < nd, then d(z',y") < (n+ 6)J.
(¢) Take any o € Geod(z,y) and let B' be the part of B between x' and y'. Then for any
z € a and 2’ € np|B|z], d(F', 7') < 84.

w3

)

B z' vy B x

FIGURE 3. Mlustration for Lemma 29.
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Proof. (a) Set the notations as in Fig. 3(2). If d(z',v1) < d(2',w}), then w) would be J-close
to y', so d(z',y") < 24, which contradicts our assumption. So d(z', wh) < d(z',v1). We have
d(z', wy) = d(z',ws3) = d(a',wh) <20 and d(y',v3) =d(y',v1) <6

(otherwise [z, z'] or [y, y'] could be shortened), hence

d(z,y) = d(z, ws) + d(ws, y) = d(z, ws) + d(wh, v1) + d(vs,y) > [d(z,2") — 20]

+ [d(l‘l, y,) - 35} + [d(yl7 y) - 5} = d(x’ xl) + d(l‘l, y,) + d(yla y) — 60.
(b) The proof is by contradiction: if d(z',y’) > (n + 6)4, then d(z',y’) > 26 hence by (a),
d(z,y) > d(z,2") +d(z',y') + d(y',y) — 66 > d(z',y') — 65 > nd.
(c) Draw the geodesic [z',y] and inscribe triples of points in the triangles {z,y,z'} and
{y,2',y'}. There are two cases as on Fig. 3 depending on the order of v, and ws along [z', y].
Using the d-fine property it is easy to see from the figure that in either case « lies in the
2§-neighborhood of [z,2'| U 5/ U [y, y]. Pick any z € « and 2’ € np[f|z], then there exists
w € [z, 2| U B U[y,y] with d(z,w) < 26. But for any w € [z,2']| U ' U [y, y|, there is a
projection w' € np[B|w] which also belongs to 4’. By (b) applied to z and w, d(2',w') < 86, so
d(p', ") < 86. O

6.5. Neighborhoods in G and X. As before, X will be a hyperbolic complex, and G := XM
with the word metric d. We present a description of the topology on X = X UdX in terms of
half-spaces. The idea of this presentation is due to Cannon, and the details were written out
by Swenson [37]. It was proved in [37] that half-spaces generate the same topology as the one
introduced by Gromov [27]; see also [9] for a list of properties.

Pick a basepoint z, € GO, Given a € 9G and t € R, denote

Ut(a,t) :={zx €G | 32’ € np[xo,alz] d(zo,2") > t},
U (a,t) :=={x € G | 32’ € np[zy,alz] d(xe,2") < t}.
Now let V*(a,t) := U*(a,t) be the union of simplices in X whose vertices lie in U*(a,t). The
sets V1 (a,t) C X form a fundamental system of closed neighborhoods of a € 0X in X.
Lemma 30. For any a € 0G and any s,t € R,
d(U (a,s),U*(a,t)) >t — s — 60
Proof. If t < s 4+ 64 then the inequality is obvious. Now pick arbitrary
seR, te[s+66,00), ze€U (a,8), yeU(a,t).

By the definition of U*, we can choose z' € np|x, a|z] and y' € np|xo, aly| so that d(zo,z") <
and d(zo,y’) > t. Since d(z',y') > t — s > 6§, using Lemma 29, d(z,y) > d(z',y') — 60
t—s—60.

For 51,5, C G, [S1, S2] will denote the union of the images of all geodesics in G connecting
points of S; to points in Ss.
Lemma 31. Let a € 0G and s € [0,00), then [Ut(a,s),U"(a,s)] C U*(a,s — 85) and
[U=(a,s),U (a,s)] CU (a,s+ 80).

s
>
U
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Proof. Pick any z,y € U™ (a, s), « € Geod(z,y). By the definition of U™, there exist projections
x' € np|xg, a|z] and y' € np|xg, a|y] with d(zg,z") > s and d(xg,y’) > s. Let ' be the interval
in [xg, a] between z' and y'. By Lemma 29(c), the projection of « into [xg,a] lies in the 86-
neighborhood of §', so & C U™ (a, s — 85). The second inclusion is treated similarly. d

6.6. Properties of d.

Theorem 32. For any hyperbolic complex X there is a canonically associated metric d=dy
with the following properties.

(a) d is quasiisometric to the word metric dx, i.e there exist A € [1,00) and B € [0,00)
depending only on X such that for all z,y € X, d(z,y)/A— B < d(z,y) < Ad(z,y)+ B.

(b) d is Isom(X)-invariant: d(gz, gy) = d(zx,y) for g € Tsom(X).

(c) (X,d) is a metric complez, that is d is induced from the 0-skeleton.

(d) There exist constants L € [0,00) and p € [0,1) depending only on X with the following
property. If a,a’,b,t' € X « € Geod(a,d'), B € Geod(b, ') and d(a,ﬁ) > 20, then
[{a, a'[b, )| < Ly,

Proof. Take the metric d as described in 6.1. (a) and (b) are shown in theorems 17 and 6(2)
in [31] for G, this easily implies (a) and (b) for the whole X. (c) holds by definition. It only
remains to show (d). Pick arbitrary vertices a, @/, b, b’ satisfying the hypotheses. Set notations
as in Fig. 2: pick a distance-minimizing pair (ao, by) for (o, 8) and choose parametrizations of
a and f such that a = a(—M), o' = a(M'), b = f(—N), b = B(N') for some non-negative
integers M, M', N, N'. Then by Lemma 28 and Theorem 26, taking the sums of geometric
series,

-1 N'— —1 N'—
{a,a'|b, V)] Z Z a(i+1)|8(7), B + 1)) Z ZCM 1:8()
—M j=—N —M j=—N
Cud(a,ﬂ) —60

|5 +]4|+d(c,8)—68 — T,,%ap)
SZ ZC“ <4(1—,u) = Ly,

1=—00 j=—0o0

where we denoted L := 4Cu /(1 — pu)?. d

Proposition 33. Let G be a hyperbolic graph of bounded valence. There exists C' € [0, 00)
depending only on G such that if u,v,w € GO and w lies on a geodesic in G connecting u to v,
then |d(u,v) — d(u, w) — d(w,v)| < C".

This immediately follows from the definition of d and Proposition 10(b) in [31]. The proposition
says in other words that geodesics in (G, d) can be parameterized to become *geodesic in (G, d),

that is geodesic up to an additive constant, where the constant depends only on G. Note though
that d and d are not necessarily *equivalent.

Lemma 34. There exists P € [0,00) depending only on X with the following property. Let
ao € XO, b0 € XOUOX, B € Geod(b, V') and by € np[Blag]. If b,V € 0X, assume b # V',
Then | (b|b'),, — d(ao, bo)| < P.
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Note that the statement is about CZ, but nearest points are defined using d.

Proof. Assume first that a, b, ¥ € X(©. We use hyperbolicity and Proposition 33:
(510 — dlaa,bo) 5 (dlag,) + d(ao, ) — d(b, 1)) ~ d(a, b)
¥ %(d(ao, bo) + d(bo, b) + d(ao, bo) + d(bo, b') — d(b, V') — d(ao, by)
= %(cz(bo, b) + d(bo, V') — d(b, b)) ~ 0,

where ~ is Tequivalence with a constant that depends only on X. This extends to the case

when b or o is in 0X. O

6.7. Extension of double difference. Let (a,a’,b,t') € X*. A 0X-triple in (a,d’,b,b') is
a set of three distinct letters taken from a,a’,b,b" such that each letter represents a point in
0X C X. A 0X-triple is trivial if the three letters represent the same point in 0X. Denote

X :={(a,d’,b,t)) € X* | each 0X-triple in (a,d’,b,b') is non-trivial}.

We have X* C X° C X*. The topology on X° is induced by the last inclusion, and X* is
dense in both X° and X*.
Recall that R := [—00, 0] is the two-point compactification of R.

Theorem 35. If X is a hyperbolic complex, the double difference (-,-|-,-) : X* — R with respect
to d defined in (32) extends to a continuous Isom(X)-invariant function (-,-|-,-) : X° — R with
the following properties.
(a) {a,d'|b,b") = (b, Va,d).
(b) {(a,d'|b,t'y = —{(d,alb, by = — (a,d'|b', b).
(c) {(a,alb,b') =0, (a,d'|b,b) = 0.
(d) {a,d'|b,b') + (d',a"|b,b") = {(a,a"|b,V), where by convention we allow +oc F oo =r and
F00 +1r = Fo00 for any r € R, and 00 £ co = F00.
(e) {a,blc,z) + (b, cla,x) + {(c,alb,x) = 0 with the same convention.
(f) {a,d'|b,t')y =00 if and only ifa =V € 0X ora' =be€ 0X.
) {a,d'|b,b') = —oc0 if and only if a =b € 0X ord =10 € 0X.
) Let (-,-|-,-) be the double difference with respect to the word metric d as in (34). Then
(-,-],-) and (-,-|-,-) are **equivalent as functions on X°.

Proof. For (a,ad’,b,b') € X*, the pairs of letters (a,b), (a', V'), (a,b’), (a’,b) and their inverses
will be called side pairs. A side 0X-pair is a side pair in which each letter represents a point
in 0X. A side 0X-pair is trivial if the two letters represent the same point. Consider the
intermediate set

S :={(a,d’,b,b") € X" | each side OX-pair in (a,d’, b, ') is non-trivial};
one checks that X* C S C X°.

(g
(h



38 IGOR MINEYEV

We first extend (-,-|-,-) to a continuous function S — R. Since X* is dense in S and R is
regular, it suffices to prove the existence of

(36) lim(a,d'|b,b'y as (a,d, b b)) — (a,a’,b,b) along X*

in R for each (a a',b,b') € S\ X* (see [1,T§8 N°5, Theorem 1]). In each such (@,a',b,¥) at
least one of @, @', b, b’ is in X and there are no trivial side 0.X-pairs. We will present the proof
in the case When a,a’,b, b are all in 0X; the other cases are similar.

Since G is Hausdorff, there is a number s € R such that

Ut(a,s)NUT(,s) =U{b,s)NUT(d,s)
=Ur@,s)NUT(b,s) =U"(b,s)NU"(a,s) =0,
So in particular Ut (b, s) UU* (¥, s) C U~ (a, s), and Lemma 31 implies
[Ut(b,s+85),UT(t,s+88)] C [U (a,s),U (a,s)] C U (a,s + 8),

hence replacing s with s+68 we can assume [U* (b, s), UT (¥, s)] C U~ (@, s). The same argument
applies to the cyclic permutations of (@, b,a’,d"). Denote

B = [x0,b], B = [x,b].

*(a, 1), therefore the edge [a(i), au(i + 1)] also
i) C U™ (b, s) and similarly g'(: + 1) € Ut (¥, s),
U_(C_L, s) (see Fig. 4). By Lemma 30,

(a,s),U"(a,7)) >i—s—65 > 26.

a:=[xg,a], o :=[xg,d],
Pick any i > 54 85. We have a(i),a(i+1) € U
lies in U*(a,4). Also 8(i) € UT(b,i) C U™ (b,
hence [3(3), 3(i + 1)) C [U* (5, ). U+<b' 9] <
d([8(3), B'(i + 1)), la(i + 1), a(d)]) >
hence by Theorem 32(d),

[ ali+1),0()| 86), /G + D) | < LufPOSCGD0) < yimenss

and similarly for the cyclic permutations of («, 5, o/, 5'); then
| (ali+1), '(i +1) 83 +1), 8+ 1)) — (@), o' (0) | B(), 5'(5)) |
= [{a(i+1),a() | (1), B'(i + 1)) = (B(i + 1), B(2) | &/ (5), ai + 1))
+{d(i+1),a ( )| 8'(2), (i +1)) = (B'(i + 1), B'(2) | (d), &/ (i + 1)) |

S 4L'uz'—s—6(5

and
Z [ (@i +1),0/(i+1) | (i + 1), B'(i + 1)) = {e(d), &/ (5) | B(0), B'(3)) |
< Z4LHZ 565 _ 41Lﬁ_:6

This shows tha (_ ( ), /(i) | B(4), B'(1)) is a Cauchy sequence in R so it has a limit in R which
we denote (@, a’ |b,b'). We show that (@, a' |b, V') is indeed the limit in (36). For any i > s+164
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ai +1) B(i+1)

B(i+1) » &'(i+1)

FIGURE 4. Extending (-, -|-,-) from X* to S.

and any (a,d’,b,b') € (U*(a,i) xUT(a, 1) xUT(b,5) x UT(¥,4))N(X)* we have by lemmas 31
and 30,
d((BG), V], [0, a(i)]) > d(U (@, 5), U (@i — 85)) > (i — 86) — 5 — 65 = i — 5 — 145 > 25

and the same for the cyclic permutations of (a, o/, 3, 8'). Then similarly to Fig. 4,

|<CL, a | ba bl) - <a(2)a O/(i) | IB(Z)’ 61(7’»'
= [{a, (i) | B(0), ') — (b, B(1) | &/(d), a) + (d', &/ (i) | B'(4), b) — (¥, B'(d) | (d), @)
S 4L'uifsfl46 — 0.
1—00
The above inequality is proved for wvertices a,a’, b, b, but by linearity of double difference over
simplices (35) it also holds in the case when

(a,d,b,b") € (VT (@,1) x VI(@,i) x VI (bi) x VT(¥,4)) N X*"
This implies that (a,a’|b,b') is the limit in (36).

Now we want to extend (-,-|-,-) to a continuous function X° — R. Pick an arbitrary
(a,a’,b,b') € X°\ S. This means that there is a trivial side dX-pair in (a,a’,b,b'), for ex-
ample @ = b € 0X, then @ # a = b’ # b. Again, since S is dense in X° and R is regular, it
suffices to prove the existence of

(37) lim {a,d'|b,b') as (a,d’,b,b') — (@,a,b,b) along S

in R. Fix any ay € X, then we have (a,a’, b, ao), (ag, @, ag,b') € S. Above we proved that
(-, -], -) is continuous on S and takes values in R, hence

(38) lim (a,d'|b, ap) = (@,a@'|b,ag) € R and lim(ag,a|ag, V') = (ag,@|ag,b') € R

as (a,ad',b,b') — (a,a’,b,b") along S.

(39)  (a,d[b,b') = (a,d'|b, a0) + (a, d’|ag, b') = {a, a’[b, a) + (a, ao|ao, V') + (ao, a'|ag, b')

holds if all the terms are in X* and therefore, by continuity, in S. Pick any ¢« € R and
(a,d’,b,b') € (U (a,i) x UT(@,3) x UT(b,5) x UT(¥,7)) N'S. Let by € np[a,b'|ao]. It follows
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from Lemma 30 that d(ag, U (@,i—60)) — oo as i — co. Since d and d are quasiisometric (The-
orem 32), the same holds for d(ag, Ut (@,i — 69)). By Lemma 31, [a, V'] C [U*(a,i),U"(a,1)] C
U™ (a,i — 89), then by Lemma 34,

(a, aglag, V') = (alb),, > d(ag, bo) — P > d(ao, [a,b']) — P > d(ao, U"(a,i — 65)) — P = 0o,
The above inequality holds when a,a’,b, b’ are vertices, and by (35) it extends linearly to the
case (a,a’,b,b') € (V*(a,i) x VT(@,i) x V*(b,i) x VF(a,i)) NS. (38) and (39) also hold in
this case, and they together imply that the limit in (37) equals co.

The same result is obtained when (@',b) is a trivial side dX-pair. When (@, b) or (a’,b') is
a trivial side 0X-pair, the limit equals —oco by the same argument with inequalities reversed.
This implies (f) and (g) and the existence of continuous extension to a function X° — R. Parts
(a) though (e) now follow by continuity from the properties of the double difference in X.

It remains to show (h). Take a,a’,b, b’ € X a geodesic [b,b'] in the 1-skeleton and let z
and 2’ be some nearest point-projections of a and @’ to [b, b'], respectively. Orient [b, d'] from b’
to b. It is an exercise in triangle inequality to see that (a,a'|b,d") is Tequivalent to the signed
distance d(z,z'), according to the orientation. Similarly, using Proposition 33, (a,d’|b, ') is
+equivalent to the signed distance d(z,'). But d(z,2') and d(z, ') are **equivalent. This
proves (h) for vertices in X. Now the **equivalence extends to all of X°. O

The double difference is continuous in X° and discontinuous at every quadruple in X*\ X°.
Theorem 35 immediately gives the continuous extension of the Gromov product (a|b), to the
case when (a,c,c,b) € X° This is equivalent to (a,b,c) € X*, where

X" :={(a,b,c) € X? | c€0X — (a#candb+#c)}.
We have X? C X> C X? and Theorem 35 implies

Theorem 36. If X is a hyperbolic complez, the Gromov product (a|b), with respect to d given
by (33) extends to a continuous function (-|-). : X* — [0, 00| such that (a|b), = oo iff c € 0X
ora=>b¢€0X.

6.8. More properties of double difference.

Lemma 37. Let X be a hyperbolic complez. There ezist A € [1,00) and C € [0,00) depending
only on X such that for all (a,a',b,¥) € (XPUIX)*NX®, a € Geod(a,a’) and B € Geod(b, V'),

d(a, 8) > max{(t/,ald’,b)}, (V',d'|a,b)} /A — C.

Proof. Take a distance-minimizing pair (ag, by), ag € o, by € 3, and set notations as in Fig. 2.
Ifa=a € 0X or b ="V € 0X then the inequality obviously holds because both sides are oco.
Now we assume otherwise; this implies that ag, by € X©. By the triangle inequality,

d(ag, by) > d(a,b) — d(a,ao) — d(b,by) and d(ao, by) > d(d’, V) — d(d’, ao) — d(V', by).



FLOWS AND JOINS OF METRIC SPACES 41

Since ag € a and by € 3, by Proposition 33,

A~

(a0, ) > 5 (d(a, ) — d(a a0) — d(b,b)) + 5 (d(a', ) ~ d(ao, ') — (b0, ) )

_ % (da, b) +d(a, 1)) - % (d(a. a0) + d(ao, a")) - % (00, o) + (b0, )

> % (d(a.t) + d(a'. 1)) - % (d(a.a) +07) +
= (b, ald’,b) — C'.
The same argument with ¢ and @' interchanged yields d(ao, by) > (V' d'|a, b) — C", so
d(ag, bo) > max{(¥, ala’,b) , (v, a'|a,b)} — C".
Since d and d are quasiisometric (Theorem 32(a)),
d(a, B) = d(ag, bo) > d(ao,bo)/A — B > max{(¥,ald’,b), (¥, d'|a,b)}/A - C'/A - B,
so we denote C := C'/A + B. O

(J(b, o) + C')

Proposition 38. Let X be a hyperbolic complex. There erist constants T € [0,00) and X €
[0,1) depending only on X such that for all (u,a,b,c) € X°, if (u,alb,c) > T or {(u,bla,c) > T,
then

[(u, c|a, b)| < X% <1 and  |(u,cla,b)| < A®ble0 <1 (see Fig. 5).
Equivalently, if max{(u,alb,c), (u,bla,c)} > T, then |(u,c|a,b)| < Amaxilwalbe)(wbla,c)} <
Moreover, A can be taken arbitrarily close to 1, with T depending on A.

Proof. First assume that (u,a,b,c) € (X© U dX)* N X°. Take any T > A(C + 26), where A
and C are from Lemma 37. Denote m := max{(u,alb, c), (u,b|a, c)}; our assumption is that
m > T. By Lemma 37 and our choice of T,
d([a,b], [u,c]) > m/A—C>TJ/A—-C > 26,
then by Theorem 32(d),
[(u, cla, b)| < LpUthled) < LyymA=C = (L) ()™,

The right hand side decreases exponentially in m, so by taking A € [0,1) sufficiently close
to 1 and taking T sufficiently large we can guarantee that the right hand side is at most A™
whenever m > T.

Now consider the general case (u,a,b,c) € X°, and let m be as above. Let D € [0,00) be
the maximal d-diameter of a simplex in X, then X(® U dX lies in the D-neighborhood of X. If
u € X, then u is in a simplex of X, and we replace u with an arbitrary vertex u’ of that simplex.
If w € 0X, let v := u. This replacement changes (u, a|b, ¢) and (u, bla, c) by at most D. Doing
the same for all four points, i.e. replacing (u, a, b, ¢) with nearby (v, d, ¥, ¢) € (X(QUoX)*nX°
changes (u,a|b, c) and (u,bla, c) by at most 4D. So by the above argument,

m>T+4D = max{{,d|V,d), & bd,d)} >T
= |(u',c’|a',b’>| < )\ma.x{(u’,a’|b’,c’),(u’,b’\a’,c’)} < )\m—4D — )\—4D)\m.
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FIGURE 5. (u,c|a,b) is exponentially small.

This holds for all nearby points (u', a’, ¥, '), so by the linearity formula (35), the same holds
for (u,a,b,c):

m>T+4D = |(u,cla,b)| < A *PA™,

Again, since the right hand side decreases exponentially in m, we can increase A € [0,1) and
T € [0,00) so that

m>T = |(u,cla,b) <A™

7. THE CROSS RATIO IN X.

Consider the double difference (-, -|-,-) given by Theorem 35.
Definition 39. The cross-ratio in X is the function [-,-|-,-] : X° — [0, 00] defined by

(40) |[:C’ $l|y, yl]| = e($7$,|y:y’>’

o0

with the convention e =0 and e* = oo.

Formulas (32) and (40) can be applied to the standard metric on H? in place of d. In this
case [-,-|-,-] on the boundary OH? = S? = C U {oc} is the absolute value of the usual cross
ratio in C U {oo}, therefore the notation. The following is immediate from Theorem 35.

Theorem 40. The cross ratio [-,-|-,-] in X defined above is continuous in X° and Isom(X)-
wnvariant.

This theorem generalizes the fact that Mobius transformations of H*, and, more generally,
isometries of CAT(—1)-spaces, preserve the cross-ratio on the ideal boundary. In our case
[-,+],-] is defined on X°, where X is any hyperbolic complex. In particular, it is defined on
all pairwise distinct quadruples of points in X. Theorem 40 is also a sharp version of 35,
Proposition 4.5] where quasiinvariance of a (non-continuous) cross-ratio (that is invariance up
to an affine function under quasiisometries) was proved; and also of [23] where a measurable
(non-continuous) invariant cross-ratio was constructed.
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8. THE SYMMETRIC JOIN OF X.

Let X be a hyperbolic complex. The functor ® defined in section 2 can be applied to any
topological space, in particular X makes sense, at least as a set. ®X is called the symmetric
join of X. In this section we extend the earlier constructions from X to &X.

8.1. Parametrizations of ®X. Recall that in 2.2 each line [a,b] of X was parameterized
by [— (b|zo), , (a|zo),] € R, where z, is a fixed basepoint in X. Now suppose in addition
that X is a hyperbolic complex with the canonical metric d asin 6.1, and a,b € X. Then
(b, 29, a), (a, Ty, b) € X”, hence by Theorem 36, — (b|z¢), and {a|z), are well-defined elements
of R, except for the case a = b € 9X. In the case a = b € 9X we let — (b|zy), := (a|zy), := 0,
so that [a, a] is identified with the trivial interval [0,0] C R. Note that the function (-|-). is not
continuous at the triples (b, zo,a) with a = b € 0X.

This extends the parametrization in 2.2 to a parametrization 8X: lines [a, b] are identified
with the closed intervals [— (b|zy), , (a|zo),] which are now subintervals of R rather than of R.
The lines connecting distinct points at infinity are copies of R. The maps

[a,b;] = [a, b; ]z, and [a,b;-]" = [a, b; ],
are defined by the same formulas as in 2.2.
The projection function [-,|-] is defined by the same formula as in Definition 7:
(41) {a,d'|b) := (a,d|b, zo) , [a,d'|b] := [a,d’; {a,d'|b)].

But now, by continuity, the projection makes sense for any a,a’,b € X.

Take any z; € X. By the same argument as in 2.10, [a, b;-];, is the isometric orientation-
preserving reparametrization of [a, b] whose origin [a, b; 0], is the projection of z; to [a, b].
8.2. Actions on ®X. The actions by R, Z,, and Isom(X) on X extend to X by the same
formulas as in 2.6, 2.7, 2.8. The formula (14) for the Isom(X)-action indeed makes sense
because by the triangle inequality [{a,b|zo, g '@o)| < d(0, 9 '2¢) < oo for all a,b € X, and
therefore by continuity for all a,b € X. For a = b € X the formula implies

g IIG, a; O]] = I[ga“a ga; 0+ <CL, a|x0, g_11?0>]] = I[gaa gqa; O]Ia

i.e. the Isom(X)-action on ®X restricts to the usual Isom(X)-action on X.
~ These action satisfy Lemma 6 with X replaced by X, in particular, the Z, and R-actions fix
X pointwise.

8.3. The models X, 8X, *X, #X, sX. We use the same notations as in section 2 with X
replaced by X. In accordance with 2.1 denote
*X = (eX)\ X.
%X is called the open symmetric join of X. o )
Just as in 2.3 and 2.4, [-,-;]’ induces a surjection [-,-;-]' : X? x R — X and bijections
(42) [o5] e X — 8X,
(43) I I (XP\A) xR — x£X and Io [ o %X — #X

x(Q bl
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where A is the diagonal of X2. The topology on 8X and X is defined by either of these maps.
Denote B B B
sX = (8X)\0X =xX UX,
so we have *xX C sX C 8X.

8.4. An extension of §*. Pick z,y € X, then they are of the form z = [a,a’;s] and
y=1[bV;t], a,d’,b,b € X, for some appropriate s and ¢; then necessarily s,t € R and

(44) (a€dX — d #a) and (bedX — V #b).
Theorem 35 and Theorem 36 imply that the formula
(45) Bi(z,y) = (ald’), + |s — (a,d'[u)| — (b[V"), — [t — (b, U'[u)]

as in Definition 10 makes sense for all triples (u, z,y) € X x (¥X)?, and for such triples 3;(z,y) €
R. For each fixed (z,y), 8(z,y) is Lipschitz in u € X: this follows from Theorem 11(a) by the
continuity of the double difference, since ®X is dense in #X. We will see later in Theorem 55
that 8~ further extends to a continuous horofunction.

8.5. The map ¢ = v¥x. Recall that [a,a'] is an arbitrary fixed choice of geodesic in X
connecting vertices a and a’. For each a,a’ € X make an arbitrary choice of projection point
in np[a, a'|zo] denoted [a,a’|zo]. Proposition 33 says that the (images of the) usual geodesics
in (XM, d) can be parameterized to become *geodesic in (X, ci), i.e. geodesic up to a uniform
additive constant.

Define a map ¥ = 9x : €X — X as follows.

(a) fz € X, let 9(z) := .

(b) For a,a’ € X, consider the open interval parameterized as in 8.1, so it has the usual
metric as a subinterval of R. Using Proposition 33 let 1) map Ja, a'[ *isometrically to
(]a,a'[,d), with a uniform constant.

(c) If both a,a’ € 0X, we additionally require the origins [a, a’; 0] to map uniformly close
to [a, d'|zo].

The map 1) *commutes with the Isom (X )-action on X and X, i.e. d(v(gz), g1(z)) is uniformly
bounded over all g € Isom(X) and z € ®X. v maps $X to X.

8.6. Extending d* and d, to #X. Define d* by the same formula
d*(z,y) := sup |B;(z,y)]
ueX

as in 3.2, but now applied to all 7,y € X, i.e. d*: (¢X)? — [0, 00]. Define

~ o —|r| [e'9) —|7|
(46) @d(.’E, y) = / dx(r‘f'x’ T+y) € 5 dr and (p(.%) — (PX(x) — / rto eT dT‘,

o —00

and denote for simplicity d, := ed. The formulas are the same as (16) and (18) in 3.3, but
d. : (#X)? — [0,00] and ¢ : ®X — #X. In what follows we deal with d, d* and d, in the
generalized sense, with infinite values allowed.
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Proposition 41. For any hyperbolic complex X, the map v in 8.5 viewed either as (¢X,d*) —
(X,d) or as (¢X,d,) — (X,d), is a *map. In particular, d* and d, take finite values on X

Proof. We can discard the boundary since the values of J, d* and d, are either 0 or oo and
Tequivalence is easily checked. ¢ is surjective, therefore the conclusion of the proposition is
equivalent to saying that (X,d*) — (X,d) and (#X,d,) — (X, d) are Tmaps. By Lemma 18
it suffices to show that the first map ¢ : (#X,d¥) — (X, ci) is a Tmap.

It is not hard to see from the definitions of ¢ and ¢ (Definition 10, see also Fig. 1), using
hyperbolicity, Proposition 33 and Lemma 34, that

l(u, ) and d(u, ¥(x))

are Tequivalent as functions of (u,z) € X x #X. Then by Lemma 1,

B4z, y)| = |0(u,2) — (u,y)|  and  |d(u,(z)) — d(u, ¥(y))]

are Tequivalent as functions of (u,z,y) € X x (¥X)2. Therefore
d*(z,y) =sup [By(z,y)]  and  sup [d(u, (@) — d(u, 9 (y))|
ue ue

are *tequivalent as functions of (z,y) € (¥X)?. But since ¥(x),%(y) € X and by the triangle
inequality, the last supremum is achieved at u = ¢ (z) and it equals d(v(z), % (y)). So d*(x,y)
and d(v(x),v(y)) are Tequivalent, i.e. ¥ is a Tmap. O

A subset S of a (pseudo)metric space Y is cobounded in Y if there is C' € [0, 00) such that
Y is contained in the C-neighborhood of S.

Proposition 42. Let X be a hyperbolic complex and v be as in in 8.5, then d*(y,v(y)) and
d.(y,¥(y)) are bounded uniformly over y € X . In particular, lines [a,a'] in (#X,d*) and in
(#X,d,) are uniformly close to geodesics [a,a'] in XV U 0X. Also, X is cobounded both in
(#X,d") and in (3X,d,).

Proof. Let B be the constant of the Tmap ¢ : (X, d) — (X, d), and pick any y € ®X. By
definition 1 is idempotent, i.e. ¥?(y) = ¥(y) € X, hence

d*(y, ¢(y)) < d((y), ¥*(y)) + B = d(¥(y),%(y)) + B = B.
The same proof for d,. O

Proposition 43. For any hyperbolic compler X.
(a) dy, d* and d coincide on X, i.e. the canonical embeddings (X,d) — (¢X,d*) and
(X,d) — (¢X,d,) are isometric.
(b) The map 1 in 8.5 viewed either as (8X,d*) — (X,d) or as (8X,d,) — (X,d) is a
*tisometry.

Proof. (a) follows from Theorem 16(c) (or 13(c)).
(b) follows from (a), propositions 41 and 42. O
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Theorem 44. Let X be a hyperbolic complex.

(a) The function d* above is a well-defined Isom(X)-invariant pseudometric on X inde-
pendent of xo. It is a generalized pseudometric on X.
(b) The inclusion of each line ([a,b],|-|) — (8X,d>), a,b € X, is an isometric embedding.

Proof. By Proposition 41 the values of d* on (¥X)? are indeed in [0, 00). The rest follows as in
the proof of Theorem 13. U

We summarize various properties that generalize from X to X.

Theorem 45. Let X be a hyperbolic complex.

(a) The function d, in (46) is a well-defined Isom(X)-invariant metric on ¥X independent
of xo. It is a generalized metric on X .

(b) For each r € R, the map r* : (3X,d,) — ($X,d,) is a bi-Lipschitz homeomorphism
with constant e,

(c) The map ¢ in 8.5 is a well-defined canonical surjection (¢X,d,) — (#X,d*) whose
restriction to each line ([a,d'],d,) is an isometry onto ([a,d’],d”). In particular, each
line [a,d'] in (X, d,) can be parameterized to become a d,-geodesic from a to a'.

(d) The restriction of ¢ to X is the identity map (X, d,) — (X,d), and it is an isometry.

Proof. By Proposition 41 the values of d, on (3X)? are in [0,00). The rest is shown as in
theorems 14, 15, 16. O

9. THE TOPOLOGY OF &X.

9.1. The topology 7, on ®X. We define a topology 7, on X as follows. Neighborhoods
of a point z € #X are d,-balls centered at x. Neighborhoods of a point £ € 90X are the
preimages of neighborhoods of z in X under the tisometry 1 : (8X,d,) — (X, d) from 8.5 and
Proposition 43. 7, induces the original topology on X C eX.

Lemma 17(b) immediately extends to

Lemma 46. For all a,d’ € X with a # d', [a,d’;-] : R — ([a,d'], T5) is a homeomorphism.

Lemma 47 (convexity of 7). Let X be a hyperbolic complex and b € X . For any neighborhood
N of b in T, there is a neighborhood N' of b in T, with the following properties.
(a) If a,a' € X and z,2' € [a,d'] N N', then the subinterval of [a,a'] between x and x' lies
in N.
(b) Ifa,a' € X and z,2" € [a,d'] N (#X \ N), then the subinterval of [a,d'] between x and
x' lies in e X \ N'.
Proof. We will use the property that the lines, hence their subintervals, in X can be parame-
terized to become d,-geodesic (Theorem 45(c)).

Assume first that b € #X. (a) follows from the fact that neighborhoods around b can be
taken to be d,-balls. Suppose (b) does not hold, then there exist sequences a; and @’ in X,
points z;, z, € [a;, @] N (X \ N) and points y; between z; and x/ such that d,(y;, b) — 0. Then
by Lemma 25, d.(a;,b) — 0 or d.(a,b) — 0, for example the former. Since z; lie between
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a; and y;, both converging to b in the metric d,, then x; must also converge to b, which is a
contradiction with the choice of z;.

Now assume b € 0X. By Proposition 42, lines [a,a’] in (#X,d,) are uniformly close to
geodesics [a,a'] in the 1-skeleton. Then both (a) and (b) follow from lemmas 30 and 31. O

9.2. The topology of *X. Our goal is to prove the following.

Proposition 48. Let X be a hyperbolic complex with the standard metric d. The metric
d. from 8.6 induces the original topology on the open symmetric join xX described in 8.3.
Equivalently, the map from 8.3 viewed as

I [ (X*\A) xR — (;i;))_(,d*)
is a homeomorphism, where A is the diagonal of X?2.

Lemma 49. Suppose b, a;,u; € ®X, a; — b, and {a;,blu;) # 0. Then b € 0X and it is possible
to take a subsequence so that u; — b.

Proof. If b € X, then (a;, blu;) = {a;, blus, zo) < d(a;, b) — 0 which contradict our assumptions.
Therefore b must be in 0X.

Now suppose to the contrary that u; stays away from a neighborhood V' of b for all i. Using
the definition of neighborhoods one checks that (a;, zo|u;,b) — oo, hence by Theorem 35(h),
{a;, xo|ui, b) — 00, so by Theorem 38, | (a;, blu;) | = | {as, blui, zo) | < M@®owit) 5 0 which is a
contradiction. O
Lemma 50. Let X be a hyperbolic complez, I C R be a compact interval, and a,a',b,t/ € X.
Ifb,b' € 0X, assume b# V. Then

d*([a,d';t],[b,8;t]) =0 asa—bandad — b in X

uniformly on t € I.
Proof. Suppose not, then there is € > 0 and there are sequences a; — b, a} — b' in X and t; € I
such that

d*([ai, a; t;], [b,b';t:]) > € for all 1.
Then by the definition of d* there is a sequence u; € X such that
(47) B (lai, ag; 3], [b,'58:]) > € for all 4.
Taking subsequences we can assume that one of the following four cases holds.

Case 1. t; < (a;, al|u;) and t; < (b, b'|u;) for alli.
By the definition of * (45),
B (lai, ai; t:], [b, 0 ti]) = (ailas),, — ti + (@i, azus) — (B|Y),,, +t; — (b, b'us)

(48) = (ailay),, + (@i, aglus) — (OIV),,, — (b, '[us) -
Denote the last expression 3;. By computation,

Bi = 2 {a;, blu;) — (a;, bla,) — (ai, b'|b) .

The last two terms approach 0 as ¢ — oc.
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We claim that 3; — 0. If not then (a;, blu;) /4 0, and by Lemma 49, b € 0X and, after taking
a subsequence, u; — b. Then by Theorem 35(g), (a;, a;|u;) — —oo, so by the assumptions of
Case 1, t; — —oo. This is impossible since t; € I. This proves 3; — 0.

The condition f; — 0 contradicts (47).

Case 2. (a;,a}|u;) <t; and (b,b'|u;) < t; for all i.
This is the same as Case 1 by interchanging a; <+ ai, b < V', t; <> —;.

Case 3. (b, V|u;) <t; < {a;,a}|u;) for alli.
By the definition of 5* we have
(49) B la, s 1], [0, 05 1:]) = (ailai),, — ti + (@i, ajlug) — (B|Y),, — ti + (b, b |u;)
First we let ¢; := (b, V'|u;), then

B ([ai, ajs 1], [b, 05 i) = (ailai),, — (b, 0'|us) + {ai, ajlu;) — (b|b),,, -

This expression is the same as in (48), so we call it §;. The same argument as in Case 1 shows
that ﬁz — 0.

Now let ¢; := {(a;, a}|u;), then

B ([ai, ags 1], [b, 05 :]) = (aslai),, — (BIY'),. — (@i, azlui) + (b, b'[ug) .

We call the last expression . It is obtained from f; by interchanging a; <+ aj, b <> ¥, and a
similar argument shows that 3, — 0.

By the assumptions of Case 3, (49) lies between £; and (!, hence it converges to 0. This
contradicts (47).

Case 4.  (a;,al|u;) <t; < (b, |u;) for alli.
This is the same as Case 3 by interchanging a; <+ ai, b < V', t; <> —t;. O

Lemma 51. Under the assumptions of Lemma 50,
d*([a,d;t]',[b,6;t]) =0 asa—bandad —b in X
uniformly ont € I.

Proof. Recall from 8.1 that [a, a'] is a copy of the interval [, /] C R, where o := — {d/|,), and
o = (a|rg),. Similarly, [b,b'] is a copy of [3, 8] C R where 3 := — (b'|zo), and 3" := (b[xo),-
Ifa - band ' — ¥V in X, then « — f and o/ — ' in R. (When some of a,d’,b,b are in
0X, this is an exercise for the Gromov product defined by the word metric d, and then use
Theorem 35(h) to show the same for (-|-)..)
Using Lemma 3 we denote

A:=0a,o;t] = 0la, o';t] + (e — e 7¥) /2 and

B = 0[6,81) = 08, 851 + (77 — 1),
then

1B — A| < |08, 8'5t] — Ola, o5 8] | + |e 7P — e 2 + |7l — eI

This implies that for each compact J C R,
(50) |IB—Al—0 asa—bandad —b in X

/2.
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uniformly on ¢ € J. By (7) and since the map [a,d’;-]' : R — ([a, a'], d*) is non-expanding,

d*([a, a; 1], [b, 05 8]') = d([a, o'; 0'[cr, &5 1], [b, V5 08, B'; £]])

= dx([[a, a'; A], [b,0'; B]]) < dx([[a, a'; A], [a,d'; B]]) + dx([[a, a'; B, [b,V; B]])

<|B — A| + d*([a,d’; B], [b,V'; B]).
This, Lemma 50 and (50) imply Lemma 51. O
Proposition 52. Let X be a hyperbolic complez, s,t € R, a,a’,b,b' € X. Then

[a,d';s] — [b,0;t] in (¢X,T.) as a—b, a —=b inX ands—t inR.

Equivalently, the map [-,-;-]' : X? x R — (#X,T,) is continuous.

Proof. First assume b = o'. Since ¢ — b and ' — b = b, then by the convexity of 7,
(Lemma 47), all the points of [a, a’] must converge to b as well. So now we assume b # b'.
Assume ¢t € R. For any s € R, since [a,a';-]" : R — ([a, d'], d*) is non-expanding,

d*([a,d'; 7+ s]', [b,0';r + 1)

< d([a,ds7 + s, [a, ;7 +t]') + d*([a, ;7 + £]', [b, 057 + 1]')

< |t—s|+d*([a,a';r + ], [b, b7 +1]').
Pick any € > 0. By Lemma 51 there exist neighborhoods N; of b and Ny of 8" in X such that

d*([a,a'sr + 1], [b,0);r +t]') <e
for all a € N,,, @' € Ny and r € [-1,1]. Also for 7 € (—oo, —1] U [, 00), we have
d*([a,a;r+t],[b,0;r +1]') < d*([a,a’sr + 1], [a,d’;¢]) +
dx(|[a, a;t]', [b,b'; t]]') + dx(|[b, b'it]', [b, 0" + t]]') <2|r|+e.

Then by the definition of d,,

=Ir|

2

d.([a,d';s]', [b,V';t]') = / dx(|[a, a;r+ s, [b,b;r+ t]]') S

1
~iri = ~Ir

: % ~Ir| :
§/1(|t—s\+e)e2 dr+/1 (2lr + )= dr+/ @2r| +6)°

o0

dr

<|t—s|+e+2(1/e+1)e” =0 ass—tand e\, 0.

This implies the statement of the proposition.

Assume t = oo, then [b,b';t]' = [b,b';00]' = ¥’ € X. By Lemma 46, [b,b';-]' : R — ([b,¥'], T)
is a homeomorphism, therefore by taking s € R close to oo we can make the whole interval
[b,b'; [s,oc]]" arbitrarily close to &'. For a fixed s € R, by the above argument, by taking (a, a’)
close to (b, b') in T, we can make d,([a,d’; s]', [b,V'; s]') arbitrarily small. This implies that both
[a,d'; s]' and a' = [a, a’; 00]" are arbitrarily close to ¥, then by the convexity of 7., the interval
[a,a'; [s,oc0]] can be made arbitrarily close to &'. The case t = —o¢ is similar. O
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Lemma 53. Let X be a hyperbolic complez. Let a € X and z; = [a;, aj; si]' € ®X be a sequence
such that x; — a in (8X,7T.). Then a; = a or a, — a in X.

Proof. First consider the case a € X, so our assumption is that d,(z;,a) — 0. The proof is
word-by-word as in Lemma 25.

Now we assume a € 0X. If, to the contrary, some subsequences a; and a;- stay away from a
neighborhood V of a in X, then by the convexity of 7, all the lines [a;, a;], and hence all z;,
must stay away from some smaller neighborhood of a, which contradicts z; — a. O

Proof of Proposition 48. We will show that the identity map xX — (#X,d,) and its inverse
are continuous at every point y =]b,¢';t[' in xX.

Proposition 52 says that ;EX' — (;I;]X' ,d,) is continuous at y. Suppose that the inverse map
(;EX ,dy) — ;EX' is not continuous at y. We obtain a contradiction just as in the proof of
Proposition 20, but using X, Proposition 52 and Lemma 53. O

9.3. Properness of_ekX' . A metric space Y is called proper if each closed ball in Y is compact.
Recall that X =X \ 0X.

Proposition 54. For any hyperbolic compler X, (3X,d,) is proper.

Proof. Let By(r) be the closed ball in (¥X,d,) of radius r centered at the basepoint 2y € X.
Since X is cobounded in (¥X,d,), any ball lies in B,,(r) for sufficiently large r. Since (X, d,)
is a metric space, it suffices to show the sequential compactness of By ().

Fix r > 0 and pick z = [a,d;s]" € Bg.(r). We have by the definitions of ¢ and d* and
Lemma 18,

(ald’),, < {ald)y, +[s = (a, d'|xo)| = £(x0, ) = [£(x0, T0) — (w0, T)]

< sup |l(u, xo) — L(u, z)| = d*(xo, ) < di(x0,2) +2 <7+ 2.
ueX

Similarly |s| = |s — (a,d'|zo)| < r + 2. Let x; = [a;, a; s;] be a sequence in By (r). We have
(ailai),, <r+2 and [sf <r+2 foralli.

After replacing {z;} with a subsequence, s; converges to some 5 with |5| < r+2. By Theorem 36,
the function (-|-), : X* — [0, o0] is continuous, hence the set
{(a,d') € X* | (ald),, <7 +2}
is closed in X? and therefore compact, so after replacing {z;} with a subsequence again, a; and
a; converge to some @ and @' in X, respectively, satisfying (a|a’ )wo <r+2.
Denote 7 := [a,a@’; §]. By Proposition 52, d,(x;,Z) — 0. Also

d*(xo,.f) S d*(xﬂaxi) + d*(l'z,.f) S T+ d*(xuj) T,
i—00

so T € By,(r). O
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10. HOROFUNCTIONS AND HOROSPHERES IN X AND ©X.

In the classical case of H", a horofunction, or Busemann function, 3, is defined with respect
to a point at infinity, v € O0H". A horofunction in a hyperbolic metric space related to a point
u on the ideal boundary was usually defined either depending on a geodesic ray converging
to u ([4, I111.3.4], [27, 7.5.C]), or satisfied the natural identities only “up to a constant” ([25,
Chapitre 8]), or was a measurable function ([23]).

In this section we show that the metric d allows defining a continuous horofunction 3, on
any hyperbolic complex X; the horofunction will satisfy sharp identities as in the classical H"
case. We will also allow u € X; in this case 8, (x,y) will be the distance cocycle: 3 (z,y) =
cZ(u, x) —cZ(u, y). Moreover, 5 (z,y) will be defined not only for z,y € X but also for z,y € *X,
and more.

Let X be a hyperbolic complex. Recall that X = (X)\ 0X = *X U X,

Theorem 55. Let X be a hyperbolic complex and 5* be the cocycle from Definition 10.

(a) Put the pseudometric d+d*+d* on X x (sX)2. Then B* extends to a Lipschitz function
B*: X x (#X)? = R independent of xo.

(a') Put the usual topology on X and the topology induced by d* on $X. Then 3% further
ea:tends to a continuous function 3% : X x (¥X)? — R independent of x.

) B is Zo-invariant in each variable: B} (x,y) = B(z*,y) = B (x, y*).

) B satisﬁes the cocycle condition B)(x,y) + BX(y, z) = BL(z, 2).

) B* is Isom(X)-invariant: By,(97,gy) = Bx(z,y) for g € Isom(X).

) B* is isometric on lines: for all a,b € X and z,y € [a,b] \ 0X,
B (@, y)| = By (@, y)| = d*(=,y).

This extension 4 : X x (¥X)? — R will be called the horofunction in ®X.

(b

(c
(d
(

¢

Proof. We only need to prove (a) and (a'), then (b)-(d) follows from the properties of the
original cocycle and (e) follows from Lemma 12(a) and Theorem 44(b).
(a) We have x = [a,d';s] and y = [b, ;] as in 8.4. We saw in 8.4 that the formula

(51) Bul@,y) = (ala’), + |s — (a, a'[u)| — (bIb'), — [t — (b, U'|u)

makes sense for the triples (u,z,y) € X x (#X)2, and that for such triples 82(z,y) € R and is
Lipschitz in u. The inequality

183", ') = Bz, )| <185, z) |+ By, )]
SSE)I?WJ( )\+Sup|ﬂ (v, y)| = d*(2",x) + d*(y,9')

shows that 3 is also Lipschitz in z and y, therefore in the three variables simultaneously.
(a') We want to extend 5* to X x (¥X)? continuously. Let 4 € 0X. By [1, 188 N°5, Theorem 1]
it suffices to show the existence of the limit

(52) lim 5)(z,y) as u— u along X
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in R. First assume u € 0X \ {a,d’,b,0'}, then by Theorem 35 and Theorem 36, as v — u
along X,
(a,d' |u) — {a,d|u) € R, (b, V' |u) — (b,b'|u) € R,
(ald), — (b|b'), = (ald’),, — (blb}y, + (@, blu, zo) + (', b'|u, 7o)
— (ald’),, — (OV'),, + (a,bla, xo) + (d', V|4, z0) € R,
because under our assumptions there are no trivial 0.X-triples in the above terms. Hence by (51)

the limit (52) exists in R.
Now assume %@ = a € 0X \ {d/,b,b'}, then as u — a along X,

(53) (b,b'|uy — (b,b'|a) e R and (a,d'|u) — —o0,
hence for u sufficiently close to a,

(54) (ala), +1s = (a, d'|u)| = (V) = (ala’), + s = (a, a'[u) — B[V},
= s+ (d,b|u, zo) + (', blu, o) — s+ (d,b'a,z) + {a',bla,xy) € R.
(53) and (54) show that the limit (52) exists in R. The similar argument works for each of the

cases u =da' € 0X \ {a,b,0'}, u=b€ 0X \ {a,d,b'}, u=V € 0X \ {a,d,b}.
Now assume & = a =b € 0X \ {d/,b'}, then as u — a along X,

(a,d'|lu) - —c0  and (b, V' |u) = —o0,
hence for u sufficiently close to a,

Bulz,y) = (ala’), +[s — (a,d'|u)| — (b|b'), — |t — (b, &'[u)]
= (ala"), + s — {(a,d'|u) — (b[0), — t + (b, V|u)
={(d,b'|u,a) + (d,b'|u,z0) — (d,b']a,zy) € R

The cases u =a =V € 0X \{d, b}, u=d =be€ X \{a,V/},u=0d =V € 0X \ {a,b} are
similar. Our condition (44) implies that there are no more cases to consider. d

Of interest are special cases of Theorem 55:
e When u € X, z € [a,u] and y € [b,u], B becomes the usual distance cocycle:
B (x,y) = d*(u,y) — d(u, z). In particular, 8(z,y) = d(u,y) — d(u, z) for u,z,y € X.
e When u € 9X, /3 becomes a horofunction: 8(z,y) = lim (d*(v, y) — d*(v,z)) as v = u
along X. In particular, for z,y € X, f(z,y) = lim (cf(v, y) — d(v,x)) as v — u along
X. Thus * satisfies the usual definition of a horofunction; the limits indeed exist.

For x € X, H,(x) := {y € X | B%(x,y) = 0} is the horosphere at u containing z.

Lemma 56. Let u,a,b € X and suppose that those of u, a, b that lie in 0X are pairwise distinct.
Then the four projections [a,u|b], [b, u|a], [u,a|b] and [u,bla] lie on the same horosphere at u.
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Proof. The assumptions on u,a,b and Theorem 35(fg) imply that (a,u|b), (b,u|a), (u,alb),
(u,bla) are in R, therefore all the four projections lie in #X and the horospheres containing
them are indeed well-defined. If v € X, using Definition 7,

Bi(la, ultl, [, ulal) = B(la, u; {a, ulb)], [b, u; (b, ula)])
= (blu), + [ (b, ulu) — (b, ula) | — (alu), — [(a, ulu) — (a,u[b)|
= [ (b, ulu, a) [ = | {a, ulu,b) | = (bla), = (alb), =0,

i.e. [a,u[b] and [b,ula] lie on the same horosphere at u. This extends by continuity (Theo-
rem 55(a)) to the case u € X. The rest of lemma follows from the Zy-invariance of 5*:

Ba(la, ult], [u, alb]) = B;([a, u[d], [a, u‘b]]*) = Bu([a, ulb], [a, u[b]) =0,
and similarly for [u, b|a]. O

11. SYNCHRONOUS EXPONENTIAL CONVERGENCE OF LINES IN 8X.

Recall from 2.10 and 8.1 that [b, ¢; -], is the isometric reparametrization of [b, ¢] whose origin
[b, ¢; 0], is the projection of a to [b, c].

Theorem 57 (exponential convergence in d*). Let X be a hyperbolic complex. There exist
N € [0,00) and X\ € (1/e,1) depending only on X such that for allt € R and a,b,c € X,

dX(|[b, ¢; tla, [a, ¢ t]]b) < N

This theorem provides

e an upper exponential bound that is independent of the choice of a, b, c;
e a synchronous exponential convergence: it is easy to see from Lemma 56 that at each
time ¢ > 0, [b, ¢;t], and [a, ¢; ], lie on the same horosphere centered at c;
e the place where the exponential convergence starts occurring, namely the projections
[b, cla] and [a, c|b] corresponding to ¢t = 0.
Note also that t is not assumed to be appropriate for [b, c], or [a, c]s.

[[(L, [$H t]]b

FIGURE 6. Synchronous exponential convergence of lines.

[a>clb] = [a, €3 0],
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Proof. First note thatifa =b€ 0X ora =c € 0X or b= c € X, then [b,¢;t], = [a,¢;t]p, € 0X
and the lemma obviously follows (here we view d* as a generalized pseudometric in #X). So
from now we will assume that those of a, b, ¢ that lie in 0.X are pairwise distinct.

Let T € [0,00) and A € [0,1) be the constants from Lemma 38. Increase A if needed so that
A € (1/e,1). First we will show that

(55) d*([b, ¢; t]a, [a, ; t]5) < 2X* for all t € [T, 00),

i.e. that the lemma holds under the additional assumption ¢ > T. By the definition of d*, (55)
is equivalent to

|ﬁ;j(|[b, ¢; tla, [a, ¢ t]]b)‘ <2) forallu e X, t €T, 0).
By the definition of 5%,
8216, tlas T, s 11s) = B(Ib, 5t + (b, cla)], [a, it + (o, cB)])

= (blc), + [t + (b, cla) — (b, clu)| — (ale), — |t + (a, c|b) — (a, c|u)]
= —(u,cla,b) + [t — (u,alb,c)| — |t — (u,bla,c)|.

This equality will be used in the computations below. Pick an arbitrary u € X.
If max{(u,alb,c), (u,bla,c)} <t, then

182([b, ¢; tla, [a, ¢ t16) | = | = (u, cla, b) + (t — (u, alb,c)) — (t = (u,bla,c))| =0 < 2X".

If max{(u,alb,c),(u,bla,c)} > t (see Fig. 6), then max{(u,alb,c),(u,bla,c)} > T and by
Proposition 38,
‘ﬁzj(llba &) t]]aa I[a’ & t]]b) ‘ S |<ua C‘a’ b>‘ + ‘ |t - <u, a|b: C>| - ‘t - <U'a b|aa c>| ‘
< [{u; cla, b)| + [(u, bla, ¢} — (u, alb, c}| = 2 |(u, c|a, b)|
S 2/\Inax{(u,a|b,c),(u,b\a,c)} S 2)\t

This proves (55). By calculus, there exists N’ € [0, 00) depending only on 7" and A such that
2N+ T —t) < N'X forall t<T.

Let N := max{2, N'}, then (55) implies that the lemma holds for all ¢ > T. It remains to
prove the lemma under the assumption ¢ < 7. By Theorem 44(b), (55) and since [b, ¢; -], and
[a, c; -]» are non-expanding,

dx([[b, ¢; tla, [a, ¢ t]]b)

< dX([b, ¢ t]a, [b, ¢ T]a) + d*([b, ¢ T)as [0, & T1s) + d*([a, & Ty, [a, ¢; t]s)

< d*([b,¢; T]as [a, ¢ TTy) + 2(T — 1) < 2X" +2(T — t) <2(X' + T — t) < N'A* < NA“,

O
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12. TRANSLATION LENGTH.

For a hyperbolic complex X, we define the translation length Z(g) of g € Isom(X) via the
metric d, that is
(56) I(g) := lim d(z,¢"z)/n

n—oo

for some point x € X. By the triangle inequality, Z(g) is independent of the choice of z. In

particular Z(g) = Z(g') if g and ¢’ are conjugate in Isom(X), so [ can be viewed as the length
spectrum of Isom(X), i.e. a function on the conjugacy classes. This concept is of interest from
the geometric point of view, for example Otal [33] and Croke [14] showed that each negatively
curved metric on a surface is determined up to an isometry by its length spectrum.

An isometry of X is called elliptic if it has a bounded orbit in X; this implies that each orbit
is bounded. An isometry g is called hyperbolic if its translation length (say with respect to the
word metric) is positive; this implies that g fixes exactly 2 points at infinity. We denote g
the repelling point and ¢, the attracting point. All isometries of a hyperbolic complex X are
either elliptic or hyperbolic.

Using d instead of the word metric enables us to express translation length in terms of the
double difference as follows (cf [28] for the CAT(—1) case).

Proposition 58. Z(g) in (56) is a well-defined real number. Moreover, for any hyperbolic
g € Isom(X) and any xr € X \{g9_,9+},

i(9) = {9+ 94|97, 2) =In[g, g |9z, z].
In particular, (9—, g+|9z,x) and [g—, g+ |9z, x| are independent of the choice of x.
Proof. If ¢ is elliptic then the orbit of any z € X is bounded, hence {(g) = 0. If g is hyperbolic,
pick a geodesic v from ¢g_ to g, and y € 7. All geodesics g™y are d-close to 7, so for each n
we choose a point y,, € v which is d-close to g"y. By [31, Proposition 10(b)] and the definition
of d, there is a constant C' € [0,00) such that for all n > 0 and all v € 7 between g"y
and g, |d(y, ) — d(yn, v) — d(y,yn)| < C. Since ¢g"y and y, are d-close, we can also assume
ld(y,v) — d(y g"y) — d(g™y,v)| < C. Similarly, for all u € v between g_ and y, |d(u, g"y) —
d(u,y) — d(y, g"y)| < C. Combining the two inequalities,

| (u,vlg"y, y) — d(y, g"y)| < ld(y,v) — d(y, ¢"y) — (g y,v)|/2
+ld(u, g"y) — d(u,y) — d(y, g"y)|/2 < C/2+ C/2 =
By continuity of double difference as v — ¢ and v — g,

(57) (9=, 9+ 1™y, y) — d(y, g"y)| < C.

By the invariance of double difference under g,

(9- 9419y, v) = (9-, 9419y, 9v) = ... = (9, 9+|9"y, 9" 'y), hence
(9= 919"y, v) = (9= 9+lgy. ) + ...+ (9=, 919"y, 9" 'y) = n {9, 9+19y,v),
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and (57) rewrites as | (9—, 9+|9v,y) — d(y, g"y)/n| < C/n. Therefore lim,,_,, d(y, g"y)/n exists

and equals (g, g+|gy,y), so l(g) is well-defined and I(g) = (9, 9+|9y, y)-
For any x € X \ {g-, 94}, by g-invariance, (g, 91|92, 9y) = (9, 94|z, y), hence

(9, 9492,2) = (g9, 94|97, 9v) + (9, 9419y, v) + (9_, 9+ |y, %) = (9_, 9419y, y) = I(9)-
0

13. THE GEODESIC FLOW OF A HYPERBOLIC COMPLEX.

Let X be a hyperbolic complex. As an example, the reader might think of a Cayley graph of
a hyperbolic group, of the group itself. Recall from 6.1 that X admits a nice canonical metric CZ,
and we use it to define the (generalized) metric d, on the symmetric join ®X. A part of the
above symmetric join construction is the flow space of X,

F(X):=x(0X) :=e(0X)\ 0X C eX.
As a set, F(X) is a disjoint union of open lines connecting disjoint ordered pairs of points at
infinity. We will use the same notation d, for the restriction of d, to F(X). (F(X),d,) plays

the role of the total space of the unit tangent bundle on X (though no bundle map is there),
and it is canonically defined for any hyperbolic complex X.

Proposition 59. (a) For a,b € 0X, [a,b;-] = [a,b;].
(b) The restrictions of d* and d, to each line in F(X) coincide with the original metric on
the line.
(¢) For each x € F(X), the orbit map R — (F(X),d,), r — rtz, is an isometry onto
the R-orbit containing x.

Proof. (a) Since a,b € 0X, [a,b] is a copy of [—o00, 0] and [a, b; -] : [—00, 00] — [a,b] is the
identity map. By definitions in 2.2,

00 —Ir| 00 =Ir|
[[a,b;t]]':/ [[a,b;r+t]]62 dr:/ (7“—1—15)62 dr =1 = [a, b;1].

(b) By (a) and Theorem 44(b),

R~
d. ([a, b; 5T, [a, b 1]') = / a*([a, b + 1, [a by + 1T

e P

dr

o0 —[r| 00 =7
:/ dx(|[a,b;r+s]],|[a,b;r+t]])€2 dr:/ |t—s\€2 dr = |t — s

= dx([[a, b; s], [a, b; t]]) = dx([[a, b; s, [a, b; t]]').
(c) Let = [a, b;t]’, a,b € 0X, then by (a), (b) and Theorem 44(b),
d.(riz,r3z) = di(la, b5 + ], [a, 0579 + 1)) = @*([a, b;r1 + 1], [a, b372 +8]) = |ry = 7| O

Let 0?°X := {(a,b) € (0X)? | a # b}. Recall from 1.3 that **isometry is quasiisometry, and
Tisometry is “quasiisometry with multiplicative constant 1”. We summarize the properties of
the flow space (sf. [27, 8.3.C]).
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Theorem 60 (Geodesic flow of X). Let X be a hyperbolic complex, d the word metric and

d = dx the canonical metric as in 6.1. Then there is a metric space (F(X),d.) canonically
associated to X with the following properties.

(a) (F(X),d.) is homeomorphic to 9*°X x R.

(b) (F(X),d,) is proper.

(¢) If Isom(X) has a cobounded orbit in X, for ezample if X admits a cocompact isometric
action, then (F(X),d,) is Tisometric to (X,d) and *tisometric to (X, d).

(d) There is a canonical isometric action of Isom(X) on (F(X),d,).

(e) There is a canonical free R-action (r,z) — rTz on (F(X),d.) by bi-Lipschitz homeo-
morphisms which commautes with the Isom(X)-action. For each xz € F(X) the orbit map
R — (F(X),d,), r = rtx, is an isometry onto the R-orbit containing x. In particular,
R acts by isometries on each R-orbit in F(X), in the standard way.

(f) There is a canonical free Zgy-action on (F(X),d.), x — x*, by isometries which com-
mutes with the Isom(X)-action and anticommutes with the R-action. It moves every
point a uniformly bounded distance and fires 0X pointwise.

(g) There exists a horofunction B3 : F(X)? — R which is continuous in three variables
(u,z,y) € X x F(X)? and satisfies

(Z) (ZQ—inV&riance) 51:(1" y) = 51:(1‘*’ y) = B5(37, y*)

(ii) (cocycle condition) BX(x,y) + BX(y, 2) = BX(z, 2).

(i) (Isom(X)-invariance) 85, (92, gy) = By (z,y) for g € Isom(X).
(iv) (isometry on R-orbits) For each R-orbit ]a,b] in F(X) and x,y €]a,b],
|Ba(z, y)| = 185 (, )| = du(z, y).

(h) (exponential convergence in d,) There exist M € [0,00) and X € [0,1) depending only
on X with the following property. For all a,b,c € 0X, take the isometric parametriza-
tions Ja,c;-[p: R —]a,c[ and ]b,¢;-[o: R —]b,c[ of the R-orbits ]a,c] and ]b,c[ as
described in 8.1. Then [b, c;t], and [a,c;t], lie on the same horosphere at ¢ and

di([a, ¢; t]o, [b, ¢ t]a) < M.

Similarly for any pair of lines among |a, c[, b, c[, Jc, al, e, b[.
(i) Let [ be the translation length in X defined in section 12. Then for any hyperbolic
g € Isom(X) and any y € F(X),

i(9) = lim d.(y,g"y)/n = inf {d.(y, gy) |y € F(X)}.

Moreover, if z €]g_, g+[ then d.(z, gz) = [(g)

Remark. Note that the symmetric join ®X from section 8 gives even more structure: both
X and F(X) isometrically embed into X, so ®X can be thought of as a “filling” between X
and F(X). This is a metric analogue of the following geometric situation: if ¥ is a smooth
manifold, then the space B;Y of tangent vectors of length at most 1 contains both the unit
sphere bundle S;Y and Y, as the 0-section, so B1Y is a “filling” between S;Y and Y.
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Proof of Theorem 60. (a) The homeomorphism J-,-;-[": (X?\ A) x R — (#X, d.) from Propo-
sition 48 maps 8°X x R onto F(X).

(b) The same proof as in Proposition 54 with (F(X), d,) instead of (#X,d,).

(c) The proof of tisometry between (F(X),d,) and(X,d) is the same as in Proposition 43.
The map ¢ : F(X) — X is not surjective, but the assumptions imply that it has cobounded
image in X; this is sufficient to run the argument. The *tisometry of (F(X),d,) and (X, d)
follows since d and d are **equivalent by Theorem 32(a).

(d)-(g) were proved in earlier sections.

(h) Let A € (1/e,1) and N € [0,00) be the constants from Theorem 57. Using the identity
I,-5- 1 =1,-;] in F(X) and the definition of d,,

d*([[a, c; t]s, [b, ¢; t]]a) = d*([[a, c;t+ {a,c|b)], [b,c;t + (b, c|a>]])

- /OO d(la, st + (a, )], Tb, st + (b, cla)])

o

=]

dr

00 —|r| 0 —|r| Nt
:/ d"(|[a,c;r+t]]b,|[b,c;r+t]]a)e2 drg/ N)\r+te2 dr:l—(ln)\)Z’

o

so we denote M := N/(1 — (In))?). )
(i) g € Isom(X) is an isometry of (#X,d,). For any y € X, the limit lim,_, d.(y, g"y)/n
exists, and it is independent of y (see [4, I11.6.6(1)]). Since d, coincides with d on X, for any
x € X we have

lim d.(y,g"y)/n = lim d.(z,¢"z)/n = lim d(z,g"z)/n = (g)-
This proves the first equality. For all y € X,

d.(y,g"y)/n < (d(y, 9y) + ... + d(9" 'y, g™y)) /0 = d.(y, gy),

hence [(g) = limy, ;00 da(y, g"y) /1 < d.(y, gy), SO

A

(58) l(g) < inf{d.(y,9y) |y € F(X)}.
Let g , gy € 0X be the fixed points of g and z €]g_, g, [, then by the last two properties in (g),

— X _ X X n—1 n
di(z,92) = |By, (2,92)| = |85, (2,92) + ... + By, (9" 2,9"2)|/n
= |8y (2,9"2)|/n = di(2,9"2)/n for any n,
therefore d,(z, gz) = (g) and (58) becomes an equality. O

14. ASYMMETRIC JOIN, THE BOREL CONJECTURE AND GENERAL REMARKS.

14.1. The definition of asymmetric join. If (Yi,d;) and (Ys,ds) are metric spaces, let
X =Y, UY; and pick a metric d on X which induces the original topologies on Y; and Y5.
Then d canonically extends to the metric d, = ®d on ¢X as in 3.3, and we define the asymmetric
join of Y] and Y5 to be the subspace Y Y, C X which is the union of all lines in X going
from points in Y] to points in Y5, with the restricted metric d,.
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For arbitrary Y; and Y3, there is a choice involved in defining d on the union Y; Ul Y5, but if
Y) and Y, are pointed metric spaces with isometric actions by the same group G, then d and
d, can be defined canonically, as described below in 14.2. First let us mention some important
examples when this situation arises:

(1) Under the hypotheses of the Borel conjecture (in the PL setting), M; and M, are closed
triangulated manifolds with the same fundamental group I'. Consider the universal
cover Y; := M; with any T-invariant metrics d; induced from O-skeleton (cf 5.2(3)), and
let G :=T. If T is hyperbolic, put the canonical metrics dy, on Y; (cf 6.3(3)).

(2) If My and M, are smooth manifolds with the same fundamental group T, let d; be the
['-invariant intrinsic metric on the universal cover Y; := Mi, and G :=1T.

(3) For arbitrary metric complexes (Y7,d;) and (Y2, ds) one could just let G be the trivial
group.

14.2. A metric on Y] UY5. Suppose that (Y3, d;) and (Y3, dy) are metric spaces with isometric
actions by the same group G. Let X :=Y; UY;. Pick basepoints y; € Y] and ¥y, € Y5. A pair
(y, z) of points in X is called admissible if

(a) both y and z belong to the same Y, or

(b) y = gy; and z = gy, for some g € G, or

(c) vise versa, y = gys and z = gy; for some g € G.
The length of an admissible pair (y, z), I(y, z), is defined to be d;(y, z) in case (a) and 1 in cases
(b) and (c). A finite sequence x1, . . ., x, of points in X is called admissible if each consecutive pair
(@, z;4+1) is admissible. The length of an admissible sequence, I(z1, ..., Z,), is Z;;l Uzj,xj11)-
We define a metric d on X by

d(a,b) :=inf I(z1,...,2,)

over all admissible sequences z1,...,x, in X with z; = a and z, = b. If a,b € Y, and
d;(a,b) <1, then d(a,b) = d;(a,b), i.e. d and d; locally coincide on Y;. Therefore d induces the
original topologies on Y; and Y;. If G has a cobounded orbit in Y;, for example if the G-action
on Y; is cocompact, then the embedding (Y;, d;) — (X, d) is a quasiisometry.

The above definition of d on X = Y] LI Y, makes the construction of the asymmetric join
YieY; and of the metric d, = ed canonical. In the case (1) above, if M; and M, are closed
manifolds and 7,(M;) = 7 (M,) is hyperbolic, then the join Y;&Y; of the compactifications is
also well-defined, equipped with the generalized metric d,. This allows for the use of both local
and global structures of the manifolds.

14.3. Various model spaces for hyperbolic groups. Given a hyperbolic group I', one can
take X to be either

e the group I itself,
e or a Cayley graph of I,
e or any other simplicial complex on which T acts (say, cocompactly).

We can put the metric don X as in 6.1, then the constructions of this paper provide many
model spaces, each equipped with the (generalized) metric d, and a I'-action, for example X,
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eX, F(X), XeX, XeX, XeX. The symmetric and asymmetric join functors can be iterated,
so for example, e((e(XeX))e(*X)) is a legitimate model space with an isometric I'-action.

14.4. More general metric spaces. We started with an arbitrary metric space (X, d) and
defined d* and d, on ®X. When X is a hyperbolic complex, the metric d on X was used to
define d* and d, on ®X (with infinite values allowed). The metric d was used because of its
strong properties at infinity. The definition of d* and d, can be carried out if one starts with a
more general hyperbolic metric space (X, ci), where d satisfies the properties of 6.6 through 6.8.
For example this would work for C AT (—1) spaces.

14.5. The sweep-out and the Borel conjecture. Each line [a, b] in Yi8Y, with a € Y; and
b € Yy, is given the canonical parametrization [a, b;-]' : R — [a, b]. Each ¢ € R gives the point
[a,b;t]" on each line [a,b] in Y;#Y5; the union S; of these points for a fixed ¢ will be called a
slice, and the set of all slices is the sweep-out from Y] to Y. For each t € R, S; is homeomorphic
to Y7 x Y5 (this follows from Proposition 20), but S; converges to Y7 as t — —oo and to Y5 as
t — 00, in a metric sense that can be made precise (Gromov-Hausdorff convergence on bounded
subsets).

Yi
1 v i

Yo

t = 2004

Y t=0

t = —2004
FIGURE 7. The sweep-out S; from Y; to Y5, at different times.

X has the natural I'-action induced from the [-actions on Y;, this provides an isometric I'-
action on Yi8Y5. This action preserves slices and is the diagonal action on each slice S; = Y; x Y5.

When M; and M, are closed aspherical manifolds with the same fundamental group, the
Borel conjecture asserts that they are homeomorphic. If there is indeed a homeomorphism,
then each slice in Y;eY; contains a homeomorphic and I'-invariant copy of Y; = Y5. Thus the
asymmetric join is a place to look for homeomorphisms, and the metric d, on it should allow
for analytic and geometric tools to be used.

14.6. Group-theoretic rigidity and the Poincaré conjecture. The Mostow rigidity theo-
rem [32] implies that the Borel conjecture holds in the case of hyperbolic manifolds: two closed
hyperbolic manifolds with the same fundamental group are homeomorphic. This can be viewed
as an example of a topological theorem where geometric assumptions are necessary to run the
proof.
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There is an interesting conjecture which is a topological version of the Mostow rigidity the-
orem: if two closed aspherical manifolds M and N have the same fundamental group and N is
hyperbolic, then M and N are homeomorphic. This was proved by Farrell and Jones [19, 18, 21]
in the dimensions other than 3 and 4. Again, geometric assumptions were important for the
proof. Farrell and Jones use the dynamics of the geodesic flow on a hyperbolic manifold: the
flow shrinks certain paths in the unit tangent bundle. Gabai, Meyerhoff and Thurston [24]
showed this conjecture for 3-manifolds under the additional assumption that M is irreducible;
it is this assumption that prevents the Poincaré conjecture to be deduced from the result.

From our metric (i.e. non-Riemannian) point of view, the following group-theoretic version of
the conjecture is of interest: if two closed aspherical manifolds have the same fundamental group
which is Gromov hyperbolic, then they are homeomorphic. This conjecture is intermediate: it
follows from the Borel conjecture and, if true in dimension 3, it implies the Poincaré conjecture.
Theorem 60 provides a construction of a geodesic flow F(X) with the properties needed: the
flow (i.e. the R-action) indeed shrinks distances exponentially. What is missing here is the
bundle structure, for the obvious reason: we did not have a manifold to start with, X could be
any metric space. It is also worth mentioning that in our construction R acts by bi-Lipschitz
homeomorphisms, so the topology and geometry of the space are preserved.
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15. TYPING SYMBOLS.

This is how some symbols of this paper were produced in IXTEX.

®

e X
e X
8X
* X
* X
x£X

s X

o X
oX

$\raise0. lex\hbox{$\circ\mspace{-9mu}*$}
$\raise0.2ex\hbox{$\circ\mspace{-9mu}*$}X$
$\raise0.2ex\hbox{$\circ\mspace{-9mu}*$}\bar{X}$
$\raise-0.3ex\hbox{$\scriptscriptstyle x_0$}\mspace{-10mu}
{\raise0.22ex\hbox{$\circ$}\mspace{-9mu}\raise0.22ex\hbox{$*$}X}$
$\raise0.2ex\hbox{$*$}X$
$\raise0.2ex\hbox{$*$}\bar{X}$
$\raise-0.3ex\hbox{$\scriptscriptstyle x 0$}\mspace{-10mu}
{\raise0.22ex\hbox{$*$}X}$
$\raise0.12ex\hbox{$\scriptscriptstyle\smallsmile$}
\mspace{-8.26mu}\raise0.2ex\hbox{$*$}\bar{X}$
$\raise0.2ex\hbox{$\diamond$}X$
$\raise0.2ex\hbox{$\diamond$}\bar{X}$
$\raise-0.3ex\hbox{$\scriptscriptstyle x 0$}
{\mspace{-10mu}\raise0.3ex\hbox{$\diamond$}X}$
$\raise-0.3ex\hbox{$\scriptscriptstyle x 0$}
{\mspace{-10mu}\raise0.3ex\hbox{$\diamond$}\bar{X}}$
$\beta"~{\scriptscriptstyle\times\!} u(x,y)$
$d~{\scriptscriptstyle\times\!}(a,b)$
$[\![a,b;tI\!1$
$L\![\cdot,\cdot\,;\cdotI\!1’$
$1\![\cdot,\cdot|\cdot,\cdotI\!|$
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Y 7 T’+, 14
+equivalence, 7 R, 8
Xequivalence, 7 T., 46
X+equivalence, 7 Ut(a,t), U (a,t), 35
*geodesic, 36 V+(a: t); V—(a: t): 35

+isometry , 8

w13
X+isometry, 8 L>s T

irmn:p, S asymmetric join, 58
X+m§’ 8 actions on X
P Tsom(X)-, 15

<'7'|'7 )7 67 32 R_’ 14
('7"'7')7 32 Z.2_7 14 &
[-] ], 42 actions 9n e X, 43
(alb),, 7, 32 appropriate number, 12
(a|b)z, 32 coordinate, xo-coordinate, 12
(a,a'|b), 16 coordinate of the projection, 16
[a,a'|b], 16 convexity of 7, 46
[S1, 5], 35 cross-ratio, 42
[a, a'|zo], 44 distance-minimizing geodesic
[a,b] = [a,b]z, from y to a, 34

in eX, 12 from a to 3, 34

in oX, 43 distance-minimizing pair, 34
[a, ;] and [a, b; ]’ double difference, 6, 32

ineX, 12 end-point coordinates, 12

in oX, 43 flow space, 56

generalized metric, 7
B, 17, 44, 51 geodesic, 29
6, 10 Gromov product, 7, 32
6', 10 horosphere, 52
v =1x, 44 horofunction in ®X, 51
hyperbolic complex, 29

d=dx, 28 hyperbolic graph, 29
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metric complex, 28
induced from 0-skeleton, 28
inscribed triple, 29
isometric embedding, 7
nearest-point projection, 34
open symmetric join

of X, 12

of X, 43
projection, 16
proper metric space, 50
quasiisometry, 8
shift-invariance of # and ¢', 10
side pair, 37
side 0 X -pair, 37
sweep-out, 60
symmetric join

of X, 11

of X, 43
translation length, 55
trivial X -triple, 37
word metric d, 28, 29
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