HIGHER DIMENSIONAL ISOPERIMETRIC FUNCTIONS IN
HYPERBOLIC GROUPS

IGOR MINEYEV

ABSTRACT. We introduce the notion of an R-combing and use it to show that hyperbolic
groups satisfy linear isoperimetric inequalities for filling real cycles in each positive di-
mension. S. Gersten suggested the concept of metabolicity (over Z or R) for groups which
implies hyperbolicity. Metabolicity admits several equivalent definitions: by vanishing of
{-cohomology, using combings, and others. We prove several criteria for a group to be
hyperbolic, R-metabolicity being among them. In particular, a finitely presented group
G is hyperbolic iff H, ("oo) (G, V) = 0 for any normed vector space V and any n > 2.

0. INTRODUCTION

Different versions of isoperimetric functions were discussed in various literature. A basic
example of an isoperimetric function bounds the area of a disk using the length of the
boundary of the disk. One can generalize this to higher dimensions (filling, say, spheres
with balls), and also consider different categories: smooth manifolds, cell complexes,
groups. When an edge loop in a finite cell complex can be filled with a cellular disk of
area at most a linear function of the length of the loop, the fundamental group of the
complex is hyperbolic. This is a very geometric concept, and it is also related to solving
algorithmic problems in groups.

There is a discussion [11] on higher dimensional isoperimetric inequalities in Riemannian
manifolds and in Banach spaces. Also see [4] for various kinds of isoperimetric inequalities.
In [5] it is shown that for combable groups any cycle can be filled with a chain whose
volume is bounded by the volume of the cycle times the diameter of the cycle. For
hyperbolic groups, the linear isoperimetric inequality for filling spherical 2-cycles was
shown in [2]. In the present paper we consider the homological version of isoperimetric
function. It is shown, in particular, that hyperbolic groups admit linear isoperimetric
functions (for R and Q coefficients) in each positive dimension.

J. Stallings characterized finitely generated free groups as groups of cohomological di-
mension 1 [13], or, in other words, as those groups whose second cohomology with any
coefficients vanishes. This was generalized by R. Swan [14] to infinitely generated groups.
S. Gersten suggested that a similar characterization may hold for hyperbolic groups in
terms of /,.-cohomology. He called the groups having such a characterization metabolic
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(over Z or R, depending on the coefficients). He also showed that metabolicity is suffi-
cient for hyperbolicity. It was an open question if this condition was also necessary. In
the present paper we prove that R-metabolicity is necessary for hyperbolicity.

Metabolicity corresponds to vanishing of the second /. -cohomology. Moreover, we
show that the /. -cohomology with coefficients in any vector space of any hyperbolic
group vanishes in all dimensions > 2. This is equivalent to having a linear isoperimetric
inequality for filling real cycles of each positive dimension.

The following theorem is the main result of the present paper. It is a part of a larger
Theorem 20 which summarizes the statements of the paper and results by Gersten [7, 10, 8]
and Allcock-Gersten [1] (see the next section for definitions).

Theorem 0. For a finitely presented group G, the following statements are equivalent.

(a) G is hyperbolic.

(b) G admits a quasigeodesic R-combing with bounded areas.

(c) G is of type Foo and H(”OO)(G, V) =0 for anyn > 2 and any normed real vector space
V.

(d) G satisfies linear isoperimetric inequalities for (compactly supported) real cycles in
each positive dimension.

In particular, we answer in the affirmative the following question raised by S. Gersten
in [10, p.1062] for real chains:

Problem. Do hyperbolic groups satisfy the linear isoperimetric inequality for n-cycles
for alln > 17

The most interesting equivalences in Theorem 0 are (a) < (c¢) and (a) < (d), as it
was mentioned above. The author’s main contributions are the use of R-combings and
implications (a) = (b) (dandelion construction, section 3) and (b) = (c¢) (which is the
existence of linear isoperimetric inequalities for higher dimensions, proved in [12]). The
rest is putting together known results and techniques.

The following result known before ([4], [9]) can be obtained as a corollary of the main
theorem.

Corollary 22. If M s a closed triangulated manifold which admits a metric of nega-
twe sectional curvature, then linear isoperimetric inequalities are satisfied for filling real

stmplicial cycles of any positive dimension on M.

It was asked in [1] if, given a graph T, there is a bounded linear retraction for the
inclusion homomorphism Z; (I, R) C C(T', R), where both spaces are equipped with the
¢1-norm. The argument in the present paper (dandelion construction) gives the affirmative
answer in the case when I" is a Cayley graph of a hyperbolic group.

The author would like to thank Stephen Gersten whose help and lectures on the subject
made this work possible.
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1. DEFINITIONS AND KNOWN RESULTS

For a group G and n € Z, U{oo}, U,(G) will denote the set of cell complexes X which
are universal covers of complexes of type K (G, 1) with finitely many cells in dimensions
at most n. Equivalently, X is a contractible cell complex with a free cellular G-action
whose restriction to the n-skeleton is cocompact. This notation is introduced only for
convenience. The phrase “there exists X € U,,(G)” just means that G is of type F,.

A normed abelian group (A, |- |) is an abelian group A with a function |-|: A - R
such that (1) |a| > 0 with |a| =0iff a =0, for a € A, (2) |a+ b| < |a| + |b| for a,b € A,
and (3) | —a| = |a| for all @ € A. A normed real vector space (V,|-|) is a vector space V/
over R with a function |-|: V — R such that (1) |v| > 0 with |[v| =0iff v =0, for v € V,
(2) |v+w| < |v|+ |w]| for v,w € V, and (3) |aw| < |a| - |v| fora € R, v € V.

A chain « is a filling of a chain b if Ja = b.

Definition 1. Let X be a cell complex. The f1-norm |- |1 on the space of cellular chains

Ci(X,R), is defined by
|Zaao|1 = Z | |.

g

For a boundary b € B;(X,R), thea(real) filling norm of b is defined by
bl :=inf{lal: | a € Ciz1(X,R) and Oa = b}.
Analogously, if b € Biy(X,Z), then the (integral) filling norm is
bl :=inf{la|: | a € Ciz1(X,Z) and Oa = b}.

This definition may be confusing because an integral boundary may be viewed as a real
boundary as well. In this paper we will use the real filling norm most of the time.
As shown in [7], in the case when X € U; 1 (G),

(1) [-lr = Al
on B;(X,R) for some universal constant A > 0. In particular, |- |; is indeed a norm in
this case.

Our convention is that we always equip the space B; with the filling norm and
the spaces C; and Z; with the £;-norm, even though Z; and B; may coincide as
vector spaces when X is contractible.

Definition 2. Let X be a contractible cell compler. A function g: R, — R, U {oo} is
called a homological isoperimetric function for real i-cycles or an isoperimetric function,
for shortness, if | - |f < g(|- 1) on Z;(X,R) = B;(X,R).

Note that formula (1) says that the linear inequality opposite to the isoperimetric
inequality is satisfied in most interesting cases.
Remark. Isoperimetric function in dimension i is a quasiisometry invariant [6]. Therefore
it makes sense to talk about a group having certain isoperimetric functions, namely,
we say that G has a linear isoperimetric function for real i-cycles, or G satisfies a linear
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isoperimetric inequality for real i-cycles if, for some (and hence, for any) X € U;11(G),
there exists a constant & > 0 such that | - |; < K|-|; on Z;(X,R).

Any edge path p connecting a vertex v to a vertex w can be viewed as an integral 1-
chain with boundary w — v. Abusing notation, we will usually use the same letter for the
edge path and the 1-chain, taking sums of paths etc. The support of a chain ¢ € C;(X,R),
supp(c), is the closure of the union of all i-cells o of X with ¢(o) # 0. (Note that, in
general, the support of an edge path viewed as a chain may be a proper subset of the
image of the path.)

By i(e) and t(e) we always denote the initial and the terminal vertices of an edge e,
respectively, and we will always put the path metric d on the 1-skeleta of cell complexes,
assigning length 1 to each edge.

Definition 3. A map f: (Y,d) — (Y',d') between two metric spaces is a quasiisometric
embedding if there exist constants A > 1 and € > 0 such that

1

foranyx,y €Y.

A map f:Y = Y’ between two metric spaces is called a quasiisometry if there is a
map f':Y' =Y such that f and f' are quasiisometric embeddings and the maps f' o f
and f o f' are uniformly close to identities.

A quasigeodesic path is a quasiisometric embedding of an interval of the real line.

Definition 4. Given a cell compler X with a basepoint vertex *, a combing on X s an
assignment of an edge path p, connecting * to v for each vertex v in X. A combing {p,} is
called quasigeodesic if there are numbers (X, €) such that each p, is a (A, €)-quasigeodesic
path.

We say that a group G admits a combing with bounded areas if there exist a cell complex
X € Us(@Q), a constant T > 0, and a combing {qu} on X such that, for any edge e in X,
Gite) T € — Que) s < T

Definition 5. Given a cell complex X with a basepoint vertex x, an R-combing on X
is an assignment of a chain (an R-path) q, € C1(X,R) to each verter w of X so that
0qy = w—x*. An R-combing is called quasigeodesic if there exist S < 0 and a quasigeodesic
combing {py, | w € X} on XD such that, for any vertex v, supp(q,) lies in the S-
neighborhood of supp(pw)-

A group G admits an R-combing with bounded areas if there exists an R-combing such
that the same condition as for combings holds, where the filling norm is taken over R.

Definition 6. A finitely presented group G is called hyperbolic if the following equivalent
conditions are satisfied:

(1) Linear isoperimetric inequality. For any simply connected cell 2-compler Y
with a free cocompact G-action there exists a constant K > 0 such that for any
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edge loop v in YV there exists a van Kampen diagram D with boundary v and
area(D) < K - length(7).

(2) Fine triangles. Given a connected graph T' with a free cocompact G-action, there
exists a constant 6 such that for each geodesic triangle [a, b], [b, c|, [c, a] the following
condition is satisfied: if ¢ € [a,b], a' € [b,c]|, b € [c, a] is the (unique) choice of three
points with

d(a,b') =d(a,c), d(b,a")=d(b,), d(ca)=d(c}b),
and x € [a,b], y € [a,c| satisfy
d(a,z) = d(a,y) < d(a,b),
then d(x,y) < 6.

See [3] for the proof of the equivalence.

Given a group G of type F,, a normed abelian group A, and X € U,(G), C’Z-(l) (X,A)
is the vector space of the i-chains of finite /;-norm | - |1, where |c|; := )", |c(e)| and e
runs over the i-cells of X. Since the action of G on X™ is cocompact, the boundary
homomorphisms d; : C’Z-(l) (X,A) — Cz-(i)l(X ,A) are defined for ¢ < n. The ¢;-homology
of G is defined as the homology of the chain complex (Ct(X,A),d) for i < n — 1,
ie. HY(G,R) = ZM(X,4)/BY (X, A), i <n—1, where Z(X,A) := Ker 6; and
BY(X, A) := Im 0,1

C(ioo) (X, A) is the set of all cellular i-cochains on X with coefficients in the normed
abelian group A which are bounded (as functions on i-cells with respect to the norm
on A). The coboundary homomorphism &; : Cf (X, 4) — C(’:OI) (X, A) is defined for
i <n—1,s0 (Cf,) (X, A),0d) is a cochain complex in dimensions 7 < n and its homology
H} (X, A) is defined for dimensions i < n. It is called the £, -cohomology of G. The

(o0)
{s-cohomology and the /;-homology of G' are well defined since they are independent of

the choice of X.

Definition 7. A finitely presented group is called metabolic, or Z-metabolic, if
H(Zoo) (G,A) = 0 for any normed abelian group A. A finitely presented group is called

R-metabolic if H(Qoo) (G, V) =0 for any normed real vector space V.

This definition may seem rather abstract unless one knows the following equivalent
description of metabolicity (see Theorem 12.9 in [10]).

Theorem 8 (Gersten [10]). For a finitely presented group G the following conditions are
equivalent.

(1) G is metabolic.
(2) H{,,)(X,Bi(X,Z)) =0 for some X € Uy(G).
(3) G admits a combing with bounded areas.
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(4) There exist X € Us(G) and a bounded additive retraction p : C1(X,Z) — B1(X,Z)
for the inclusion i : By(X,Z) — C1(X,Z). Here C1(X,Z) is given the £1-norm and
B (X, Z) the filling norm.

(5) There exist X € Uy(G) and a bounded additive splitting s : Bo(X,Z) — C1(X,Z) for
the boundary map 0 : C1(X,Z) — By(X,Z).

One of the goals of the present paper is to show that “hyperbolic” implies “R-metabolic”.
The implication in the other direction is known: it immediately follows from the following
theorem.

Theorem 9 (Gersten [7]). A  finitely presented group G is  hyperbolic  iff
H(200) (G, 1) = 0.

Also, a homological characterization holds:

Theorem 10 (Allcock-Gersten [1]). A finitely presented group G is hyperbolic iff
(1) _
H;”(G,R) = 0.

2. SOME PROOFS

We sketch a proof of the statement analogous to Theorem 8 for the category of real
vector spaces. Essentially, it is a rewriting of the argument in [10].

Theorem 11. For a finitely presented group G, the following conditions are equivalent.
(1) G is R-metabolic.
(2) HZ,,) (X, Bi(X,R)) = 0 for some X € Us(@).
(3) G admits an R-combing with bounded areas.
(4) There exist X € Uy(G) and a bounded linear retraction p : C1(X,R) — B1(X,R) for
the inclusion i : B(X,R) — C(X,R).

Sketch of the proof. Pick X € Uy(G). The universal cocycle u is by definition the
boundary homomorphism 0 : Co(X,R) — B;(X,R) restricted to the set of (oriented) 2-
cells in X. It is obviously a bounded function, so v can be viewed as an element in
0(200) (X, B1(X,R)). One checks that u is indeed a cocycle.

The universal cocycle u satisfies the property that, given a normed vector space V' and
a cocycle u' € C’(Qoo) (X,V), then u' factors through u. Therefore vanishing of Hfoo) (X,V)
for any V' (i.e. R-metabolicity) follows from

(%) u = dc for some c € C’(loo)(X, B, (X, R)).

A diagram chasing argument proves that (x) and (4) are equivalent. So we have (4) <
(*) = (1) = (2) = (%), i.e. all these statements are equivalent.

(4) = (3) Pick a path p, in the 1-skeleton of X from the basepoint * to v (or, more
generally, a real 1-chain p, with dp, = v — ), and define

@ = Py — p(Po)-
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If p! is another path from * to v, then, using the fact that p is identity on 1-cycles,
(Po = p(pv)) — (P, — P(P)) = (Pv — 1) — p(pv — 1) = 0.
So the definition of ¢, does not depend on the choice of path p,. By the definition of ¢,
p(Qv) =q — ¢ =0.
Also,
9gy = Op, — 9(p(pv)) = Opy,
so {¢,} is an R-combing. Let v and w be the endpoints of an edge e. Then
@ + € — qulr = |p(gw + € — qu)lr = [p(qw) + ple) — plaw)|s = [p(e)l;

is bounded independently of the choice of e, since p is a bounded map. Therefore {g,} is
an R-combing with bounded areas.
(3) = (4) Given an R-combing {g,} with bounded areas in X € Us(G), we have

Qi) e —qe)|f <T

for some universal constant T, where i(e) and t(e) are the (initial and terminal) vertices
of (an oriented edge) e. Define

p(€e) = gie) + € — (e)

and extend p by linearity to a map p : C1(X,R) — B;(X,R).
If z=)", ace is a 1-cycle, then

p(2) = D oeltie te—aque) =Y e+ Y (Gie) — Gue) =
Z+ Z Qv(z O — Z ae):z,

ve X (0) i(e)=v t(e)=v

so p is a retraction for the inclusion i : B;(X,R) — C1(X,R).
It is bounded because, for any 1-chain ¢ =), a.e,

Z aep(e)

Theorem 11 is established. O

p(c)|y =

<D lael-lple)l; ST Y lae| = Tels.
f e €

Theorem 12. If G is a hyperbolic group then G admits a quasigeodesic R-combing with
bounded areas.

Theorem 12 is a significant part of the present paper, and an essential step in its proof
is
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3. GROWING DANDELIONS

Start with a hyperbolic group G and X € U, (G). Such a complex X exists by [5]
and because hyperbolic groups are combable. Fix a basepoint vertex % in X. The 1-
skeleton X() of X has the path metric d defined by assigning length 1 to each edge
in X4, By S(r) (respectively, B(r)) we denote the sphere (respectively, the ball) of
radius 7 in X(V) centered at the basepoint, and by B,(r) the ball of radius r centered
at v. Let S := U, S(2Dk), where D is a big enough universal constant, say, the fine-
triangle hyperbolicity constant ¢ plus 5 will work. The flower of a vertex v € S(2Dk) is
Fl, := B,(D) N S(2Dk).

Fix a geodesic combing {p,} on X. For each v € S(2Dk) we construct a 1-chain (an
“R-path”) ¢, with d¢g, = v — *, inductively on k. For the only point % in S(0) define g,
to be the zero chain (or, equivalently, the constant path x). Suppose {g,} is constructed
for any vertex w in (JS- S(2Di) and let v be a vertex in S(2Dk). For each z € Fl,,
pick a geodesic path «a, (of length at most D) connecting x to v and let 3, be the part of
the path p, in the geodesic combing connecting Z := supp(p,) N S(2D(k — 1)) to z. The
R-path gz is given by the induction hypotheses. Put

1
CIU L #Flv Z (a’w + ﬂx + Q:"v)
x€eFI,
(see Fig. 1). Then
0g, = +/3x+qm_ Z[v—x — D)+ (T —%)]=v—*,
# wEFlv zEFlU

i.e. g, is an R-path from * to v. For any other vertex w in X the “one-level-lower
projection” w +— w is defined as above: w is the intersection point p,, N S(2D3), where i
is the maximal integer satisfying 2Di < d(w, *). Analogously, 3, is the part of the path
Pw connecting @ to w. We define ¢, := B, + ¢z. Again, 0¢, = w — *, so {g,} is an
R-combing on X.

We want to prove that the constructed R-combing is with bounded areas.

Lemma 13 (Projection property). For a hyperbolic group and X as above the following
properties hold.

(1) If x,y € S2D(k+ 1)), k € Zy, d(z,y) < 3D, and z', y' are the intersection points
of S(2Dk) with some geodesics connecting * to x, y, respectively, then d(z',y") < D.

(2) Let d(z,y) <1 and ', y' be points lying on some geodesic paths connecting * to x,
y, respectively, and suppose d(*,x") = d(x,y’). Then d(z',y") < D.

Proof. This lemma is an easy consequence of the fine-triangle definition of hyperbolicity.

O
Proof of Theorem 12. Going from the vertex v to the basepoint along the chain ¢, and
applying projection property 13(1) at each step we see that the support of g, lies in
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FIGURE 1. Growing a dandelion from hight 2D(k — 1) to hight 2Dk.

the 4D-neighborhood of the support of the geodesic p,, hence the R-combing {g¢,} is
quasigeodesic.

Now we are going to show the “bounded areas” condition, i.e. that for any edge e
with the initial and terminal points v and w, respectively, |¢, + e — ¢y | is bounded by
a universal constant. Allcock and Gersten show in [1] that, given any graph I' and a
summable 1-cycle z, then z can be represented as a sum of coherent integral loops with
real coefficients, i.e. z =), a;2;, where a; € Ry, z; is an edge loop, and |z|; = ), oilzils.
Since hyperbolicity is equivalent to the linear isoperimetric inequality for filling (integral)
loops, each z; can be filled by an integral 2-chain ¢; with |¢;|; < K|z;|; where K > 0 is a
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universal constant. Thus ), a;¢; is a filling of z and

E Q;C;

In other words, in a hyperbolic group, the filling norm on Z;(X,R) is dominated by the
¢1-norm, and also

< Zaz\czh < ZOCZK|ZZ‘1 - K|Z|1

2|y <

|Q'u+e_Qw|1 S |Qv _Qw|1 + |6|1 = |Qv _Q'w|1 + 1.

So it suffices only to bound |¢, — g |1 by a universal constant.
Suppose first v, w € S. We consider the following two cases.
Case 1. For some k € Zy, v,w € S(2Dk) and d(v,w) < D.
Pick a constant 7" > 6D - [#B(D)]*>. We show |¢, — g,|1 < T" by induction on k.

1 1

Y zeFl, Y yeFl, 1

1
‘W Z Z (o + Be + qz) — Z Z ay+ﬂy+Qy)

zeFl, yeFly yEFlv xz€Fl,y

<

_WZ Z|Oéz+5z+q$ — By — qzl1 <

z€Fl, yeFly

S W Z Z [|ax+ﬁw‘1+|ay+ﬂy|l]+ Z Z ‘Qw Qy‘l S

TEFL, yEF L, Y reFl, yeFly,

§6D+m Z Z |CZ:E_CI;¢7|1§

W zeFly yeFly

Since z € Fl, and y € Fl, d(z,y) < d(z,v)+d(v,w)+d(w,y) < 3D, then, by projection
property 13(1), d(Z,y) < D. The induction hypotheses imply that each term |g; — g1 in
the last sum is bounded by 7", and the term corresponding to x =y = v € Fl, N Fl, is
zero, so, continuing the sequence of inequalities,

1 T’
<6D+-———T'(#Fl, - #Fl,—-1)<6D+T — —r———— < T
<OP+ Sy, g, e B =) S OD T e T,

The last inequality holds because, by the choice of T”,
6D - #Fl, - #Fl, <6D-[#B(D)? <T.

Case 2. For some k € Z., v € S(2Dk), w € S(2D(k+ 1)), and v lies on a geodesic path
connecting * to w.
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In this case

1
|qv_q'w|1: CIU_# Z(ay+ﬂy+Qg) =
waFluJ 1
1 1
:#Fl Z(q”_ay_ﬁy_qg) S#TZZU%—(I@‘F’“%‘*‘@;HS
Y lyeFly, 1 Y yeFly,

Both v and g lie in S(2Dk) and d(w,y) < D, hence by projection property d(v,y) < D.
Applying Case 1 to the vertices v, y we obtain

1

<
T #FL

) (T"+3D) =T +3D.

YEFly

General case. v,w € X and d(v,w) = 1.
In the general case there are again two subcases to consider.
Subcase 1. For some k € Zy, v € S2D(k+1)—1), w € S(2D(k+1)), and d(v,w) = 1.
The concatenation of the path p, and the edge connecting v to w is easily seen to be
a geodesic path because its length is 2D(k + 1) = d(*,w). Then Case 2 applies to the
vertices w € S(2D(k + 1)) and v € S(2Dk), so

gy — qwl1t < |Bol1 + g5 — quwls < 2D+ (" +3D) =T" + 5D.

Subcase 2. v and w are vertices in X such that d(w,*) > d(v,*), d(v,w) = 1, and
Subcase 1 does not occur.

In this case the one-level-lower projections ¥ and w of v and w, respectively, lie on the
same level S(2Dk) for some k € Z.,, then, by projection property 13(2), d(7,w) < D,
and Case 1 applies to ¥ and w:

|Q1) - Qw‘l = ‘(ﬁv +Q17) - (/Bw +q171)|1 S |Q17 - Q’(l_)‘l + |5v|1 + |5w|1 S
<T' +2D+2D =T +4D.

So we have shown that |¢, — g1 is bounded by T := T'" + 5D whenever d(v,w) = 1.
Theorem 12 is proved. 0

The following result describes filling in a certain dimension n > 1. Here X denotes the
universal cover of a K(G, 1) complex with finite (n + 1)-skeleton.

Theorem 14 (Gersten [8]). The following statements are equivalent for a hyperbolic group
G and integer n > 2.
1) HV(G,R) = 0.
(2) HiL (G l) = 0.
(3) H(";)l(G,R) “vanishes strongly”, i.e. there exists K > 0 such that for any F €
ZMU(X,R) there exists H € Clo) (X, R) such that OH = F and |H|e < K|F|.

(c0)
(4) G satisfies the linear isoperimetric inequality for fillings of real n-cycles on X .
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We are going to show that all these properties are implied by the analogous property in
dimension 1 (which, in turn, is equivalent to hyperbolicity of a group).

4. QUASIISOMETRY INVARIANCE OF COMBINGS

In this section we will prove that having combings and R-combings with certain proper-
ties is a quasiisometry invariant. This will be needed in the next section for characteriza-
tions of hyperbolic groups, and it is interesting as a fact by itself, giving anoter geometric
property of groups.

Two cell complexes will be called quasiisometric if their 1-skeleta with the path metric
are quasiisometric.

Definition 15. An e -net in a complez Y is a subset N C YO with the property that for
any z € X© there exists y € N such that d(z,y) < €. A netinY is an €;-net for some
e > 0. A subset S C YO s called e;-separated net if for any pair of distinct vertices
xz,y €S, d(z,y) > €. A net is separated if it is ex-separated for some e > 0.

Definition 16. Given an e-net N in Y, an R-combing on (N, X) is an assignment of
a 1-chain g, € C1(Y,R) to each v € N such that 0q, = v — x. Such an R-combing on
(N,Y) is with bounded areas if there exists T > 0 such that |gy +Yy.w—qwlr < T whenever
v,w€ N, dv,w) < 2e+1, and 7,4, is a geodesic edge path in Y connecting v to w.

Lemma 17. Let N be a net in a cell 2-complex Y. Then

(1) Y has an R-combing with bounded areas if and only if there exists an R-combing on
(N,Y) with bounded areas.

(2) Y has a quasigeodesic R-combing with bounded areas if and only if there exists a
quasigeodesic R-combing on (N,Y) with bounded areas.

Proof. (1) For the “only if” direction, let N be an enet and {g,} be an R-combing
with bounded areas on Y. Consider its restriction to N. Whenever vertices v,w € N
with d(v, w) < 2e + 1 are connected by a geodesic edge path v, ,, which is a consecutive
concatenation of edges e;, j = 1,2, ...,d(v,w) — 1, we have

d(v,w)—1 d(v,w)—1
|q’” + Yow — q’w|f = Z [QZ(e) - qt(e)] + Z €; <
Jj=0 j=0
f
d(v,w)—1
< Y aie €~ tols < Td(v,w) < T(2e +1).
j=0

For the “if” direction, given an R-combing {¢,} on (N, X) with bounded areas, where
N is an e-net in Y, and given any vertex v in Y, pick a vertex v’ in N nearest to v, and
connect v’ to v by a geodesic 7, ,. Define ¢, := 7y, + g». Then, for any two vertices
v,w € Y© connected by an edge e, and a geodesic 7y, from v’ to w’,

‘qv‘i‘e_Qw‘f < ‘f)/v’,v+e_7w’,w_7v’,w’|f+‘qv’+70',w’_Qw’|f < |7v’,v+e_7w’,w_’Yv’,w"f+T'
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There are only finitely many (integral) cycles of form 7, , + € — Y w — Yo', UP tO
equivariance, so the last expression is bounded.

(2) Follows from the same construction. The result is still a quasiisometric combing since
only short “initial segments” are added to combings. O

Lemma 18. Let G and G’ be quasiisometric groups acting freely and cocompactly on
simply connected 2-dimensional cell complexes Y and Y’', respectively. Then

(1) Y admits an R-combing with bounded areas iff Y’ does,
(2) Y admits a quasigeodesic R-combing with bounded areas iff Y' does.

Proof. (1) Suppose Y admits an R-combing {g, | v € Y(®} with bounded areas. It suffices
to construct an R-combing {¢, | v € Y"©} with bounded areas on Y’. The action of G
and G’ induces a quasiisometry f : Y — Y’. The 0-skeleton Y(® is a net in Y. For any
¢ > 0 we can choose an e-separated net N C Y. (Pick a maximal e-separated subset in
Y then it is necessarily an e-net.) Then f(N) is an ¢’-net in Y’ for some ¢ > 0. Take
e large enough so that the restriction f|y is injective. By Lemma 17, the pair (NV,Y)
admits an R-combing with bounded areas, and it suffices to show that (f(V),Y”) does as
well.

For each pair of vertices z,y in Y’ pick a geodesic path v, , connecting z to y so that
Yoy = —Vy,e- Do the same for the vertices in Y. The assignment fi(e) := Yf(i(e)), f(t(e)) for
each edge e in Y, extended by linearity yields a bounded homomorphism
fi : Ci(Y,R) — C1(Y',R), because |Ys(i(e)),st(e)) |1 is bounded independently of e.

Analogously, one can choose a minimal filling (over Z) of the 1-cycle v, + Yy + Vo
for each triple of vertices z, y, z in Y. This filling exists because Y is simply connected.
So again we have a bounded homomorphism f, : Co(Y,R) — Cy(Y’,R). By construction,
the maps f, fi, f» induce a bounded chain map f, : C.(Y,R) — C2(Y’,R) in dimensions
0, 1, and 2. Define an R-combing {¢,} on (f(N),Y”) to be the image of the R-combing
on (N,Y), i.e. ¢, := fu(qs-1(y)) where v € f(N) and f~'(v) is the unique preimage of v
in V.

The set f(N) is an ¢'-net. Whenever v, w' € f(N) and d(v,w) < 2¢ + 1, the vertices
v:= f 1) and w := f}(w') are within a uniform distance form each other, and the
norms

|qv — Yow — Qw‘f
are uniformly bounded. Then

‘qql;' — Y — qqlu"f S |Q1I;’ - f*(’yv,w) - q:u'|f + |f*(%),w) - ’Yv’,w"f =
= |fe(@w) = Yo — @)l + [fe (o) = Yorw |y
is bounded uniformly over all such v and w, since f, is bounded and there are at most
finitely many cycles f.(Yyw) — Y ,» Up to equivariance.
Thus {¢, | v € f(N)} is an R-combing with bounded areas on (f(NV),Y").
(2) Apply the same construction as in (1) and use the fact that the property of having a
quasigeodesic combing is preserved via quasiisometries. O
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5. CHARACTERIZATIONS OF HYPERBOLIC GROUPS
The following result has occurred in [12].

Theorem 19. Let G be a finitely presented group. If G admits a quasigeodesic R-
combing with bounded areas, then there exists X € Uy (G) such that each inclusion map
Bi(X,R) — C;(X,R), i > 1, admits a bounded linear retraction. In particular, G has a
linear 1soperimetric function for real cycles in each positive dimension.

Roughly, the idea of the proof was the following. If G admits an R-combing with
bounded areas, theorems 11 and 10 imply that G is hyperbolic. In particular, G is com-
bable in the sense of [5] (i.e. G admits a quasigeodesic combing with the fellow-traveler
property), an it is shown there that in this case there exists X € U, (G). As we saw in sec-
tion 4, having a quasigeodesic R-combing with bounded areas is a quasiisometry invariant
property, so X admits an R-combing {¢,} with bounded areas as well. (Quasiisometry
invariance of R-combings was not proved in [12], so we presented it in section 4 of this
paper, for completeness.) We “cone off” cells to the basepoint using this quasigeodesic
R-combing. Each i-cell o and the “cone” over do form an i-cycle. We fill this cycle with
volume bounded by the volume of the cycle times a universal constant. In order to do
this we slice the cycle starting from the basepoint, fill each slice with a linear bound, and
then “fill the gaps” between the fillings.

The theorem below summarizes the results of the present paper and those by Gersten [7,
10, 8] and Allcock-Gersten [1]. Recall that B; is always assumed to be the normed vector
space with the filling norm, and C; is the one with the #;-norm.

Theorem 20. For a finitely presented group G, the following statements are equivalent.

(1) G is hyperbolic.

(2) G admits an R-combing with bounded areas.

(3) G admits a quasigeodesic R-combing with bounded areas.

(4) There exist X € Uy(G) and a bounded linear retraction p : C1(X,R) — B1(X,R) for
the inclusion map i : B1(X,R) — Cy(X,R).

(5) There ezists X € Ux(G) such that for any k > 1 there exists a bounded linear
retraction p : Cp(X,R) — B(X,R) for the inclusion map i : Bx(X,R) — Ci(X,R).

(6) H,,)(X,Bi(X,R)) =0 for some X € Us(G).

(7) H(QOO)(G, V) =0 for any normed real vector space V.

(8) G is of type Fu, and H("oo)(G, V) =0 for anyn > 2 and any normed real vector space

V.

) HY(G,R) =0.

0) G is of type Foo andH (G R) =0 for any k > 1.

1) G satisfies the linear zsopemmetmc inequality for (compactly supported) real 1-cycles.

2) G satisfies linear isoperimetric inequalities for (compactly supported) real cycles in
each positive dimension.

Proof of Theorem 20.

9

(

(
(1
1
(1
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Implication (1) => (3) is the conclusion of Theorem 12.

Implications (3) = (2), (5) = (4), (8) = (7), (10) = (9), and (12) = (11) are
obvious.

The equivalence (7) < (6) < (2) < (4) is the content of Theorem 11.

(3) = (5) = (12) is Theorem 19.

(9) & (1) is Theorem 10.

(7) = (1) follows from Theorem 9.

(11) < (1). Theorem 5.1(2) in [7] implies that (11) is equivalent to vanishing of
H(Qoo) (G, £s), then apply Theorem 9.

(7) = (10) < (12). The above implications show that each of the statements (10),
(7), and (12) implies (1), that is, hyperbolicity of G. Hence the implications (7) = (10) <
(12) follow from Theorem 14.

(4) = (7) is shown by the following diagram-chasing argument. Let f be any bounded
V-valued 2-cocycle in X. Then f extends by linearity to a bounded linear functional
f: Cy(X,R) — V. By the definition of a cocycle, f vanishes on By(X,R) = Z5(X,R) C
C2(X,R), hence f factors as a composition of 9 : Cy(X,R) — B;(X,R) and some [’ :
B (X,R) — V. By the assumptions in (4), the restriction of p: C1(X,R) — B;(X,R) to
B;(X,R) is identity, hence f'op: C1(X,R) — V is an extension of f’. This extension
is bounded as a composition of two bounded maps, so the restriction of f’ o p to the set
of 1-cells is bounded, i.e. this restriction is an element of C’(loo) (X,V). Also, because p
is identity on B1(X,R), f = f'od = ffopod = 6(f' o p), i.e. f represents zero in
H2,(X,V).

(5) = (8) is proved by the same argument as (4) = (7), considering dimension
n = k + 1 instead of 2.

Now it is a tedious exercise to see that these implications actually prove Theorem 20. [

To clear the geometry behind these formal arguments, note once again that the linear
isoperimetric inequalities follow directly from the existence of a quasigeodesic R-combing
with bounded areas, as we saw at the end of the last section. Essentially, it is just “coning
off” real cycles using the R-combing, so that the “volume” of the cone is bounded by a
multiple of the “volume” of the cycle.

An amazing corollary of theorems 20 and 9 is that the vanishing of H (200) (G, ls) implies
the vanishing of H{ (G,V) for any n > 2 and any normed real vector space V. The
implication (2) = (3) in Theorem 20 is also quite interesting.

It is worth mentioning the following two immediate corollaries of Theorem 20.

Corollary 21. A finitely presented group G is hyperbolic if and only if G is R-metabolic.

Corollary 22. If M s a closed triangulated manifold which admits a metric of nega-
twe sectional curvature, then linear isoperimetric inequalities are satisfied for filling real
simplicial cycles of any positive dimension on M.

The last corollary was proved in [4]. Also see [9] for a proof and a discussion on this
matter.
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Note that everywhere in this paper R could be replaced by Q. Though Z-coefficients
are different. The question whether any hyperbolic group is Z-metabolic still remains
open.

There is an intuitive difference between metabolicity and hyperbolicity. If c is a filling
of a 1-cycle a, one may think of ¢ as a “cone” over a. Hyperbolicity then means that
the area of the “cone” with some vertex is linearly bounded by the length of the cycle a.
The cone vertices may differ for different cycles. Metabolicity says that all cycles can be
“coned off” with respect to a cone vertex, one for all cycles. It is rather surprising that
over R these two properties imply each other.
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