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Abstract. Let Γ be a finitely generated group and Γ′ = {Γi | i ∈ I} be a family of its sub-
groups. We utilize the notion of tuple (Γ,Γ′, X,V ′) that makes the statements and arguments
for the pair (Γ,Γ′) parallel to the non-relative case, and define the snake metric dς on the set of
edges of a simplicial complex. The language of tuples and snake metrics seems to be convenient
for dealing with relative hyperbolicity.

For tuples, the properties of being finitely generated, finitely presented (cf. [28, 29]), of
type Fn, of type F , and of having fine triangles are defined. Fine triangles are the ones that
are “thin with respect to the snake metric”. Call a pair (Γ,Γ′) hyperbolic if there is a finitely
generated tuple (Γ,Γ′, X,V ′) with fine triangles and with X(1) fine. We give a definition
of relative hyperbolicity of Γ with respect to Γ′ which slightly generalizes the definition of
Bowditch, and show that this notion coincides with hyperbolicity of the pair (Γ,Γ′).

We describe the snake resolution Stς(Γ,Γ′), or the relative standard projective resolution.
It is used to define both relative cohomology and relative bounded cohomology.

We generalize the argument in [22, 23] to show that if (Γ,Γ′) is hyperbolic then H2
b(Γ,Γ′;V )→

H2(Γ,Γ′;V ) is surjective for all bounded QΓ-modules V . The same holds for bounded RΓ-
modules, bounded CΓ-modules, and Banach modules. Moreover, this statement extends to
several characterizations of hyperbolicity of the pair (Γ,Γ′).

A classifying space (Y, Y ′) for a pair (Γ,Γ′) is naturally defined. We prove that each non-zero
real (relative) cycle of dimension at least 2 for a hyperbolic pair (Y, Y ′) has positive simplicial
(semi)norm.
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1. Introduction.

Since the introduction of the notion of relative hyperbolicity by Gromov [17] there has been a
lot of progress in the area [14, 15, 6, 29, 12, 31, 10, 13]. When dealing with relative hyperbolicity
one is lead to work with the Cayley graph of Γ, and its coned-off graph defined by Farb [14],
i.e. the graph obtained by coning-off left cosets of peripheral subgroups. One of the goals of
this paper is to set up a convenient language to deal with relative hyperbolicity. This is of
importance, since the proofs of theorems about relatively hyperbolic groups tend to be long
and technical. It is especially so when one is considering relative hyperbolicity with respect to
a family of subgroups, rather just to one subgroup. The following terms that we use in the
paper seem to be convenient: fine triangle, snake metric, tuple, hyperbolic tuple, hyperbolic
pair, ideal complex, ideal tuple. In the homological part of the paper, the snake resolution and
the relative cone are used. Those are relative versions of, respectively, a resolution and a cone.

We propose a natural framework to deal with relative hyperbolicity: a graph tuple (Γ,Γ′,G,V ′).
Here Γ is a group, Γ′ is a family of its subgroups, G is a graph, and V ′ is a distinguished set of
vertices in G. The vertices of V ′ correspond to the peripheral subgroups, i.e. the conjugates of
elements of Γ′. A priori we do not assume that Γ′ is finite; this will be a consequence of other
conditions. When the graph G is replaced with a simplicial (or cell) complex, the notion of a
graph tuple generalizes to a tuple.

Let E be the set of edges in G. We work with the path metric (= the word metric) d on G,
and introduce the snake metric dς on E in 2.5. GςL is the graph obtained by taking E as its
vertex set and formally connecting e to e′ by an edge if their dς-distance is at most L. When
GςL is connected and locally finite, it plays the role of a Cayley graph of Γ.

Take two copies of an ideal triangle (i.e. a triangle with all its vertices at infinity) in a
hyperbolic plane and identify their corresponding boundaries. The result is a 2-sphere with
three punctures, and three cusps with respect to the hyperbolic metric induced from the metrics
on the triangles. The universal cover of this space is the hyperbolic plane triangulated into
ideal triangles, and we forget about the metric and remember only the simplicial structure. An
ideal complex X associated with a hyperbolic pair (Γ,Γ′) generalizes the above example. (See
Theorem 41 and Definition 42.) The name comes from an important feature of this complex:
its vertices exactly correspond to the left cosets of the peripheral subgroups, that is, all the
simplices of X are “ideal”. Analogously, one naturally talks about an ideal tuple. The name
also reflects the fact that such a complex and a tuple are ideal for our purposes (this property
is used in 10.1 and after).

The notion of fine triangles uses both metrics, as follows. Any geodesic (with respect to the
word metric d) triangle in G has a canonical map onto a tripod. We call a geodesic triangle
in G δ-fine if, for any two edges e and e′ in the triangle sent to the same edge in the tripod, one
has dς(e, e

′) ≤ δ.
Throughout the paper we consistently use the prime ′ for peripheral things, and “the snake” ς

(\varsigma) for things “in between”.
The use of tuples, the snake metric and the fine triangles property streamline the “relative

language” and make statements and arguments about relative hyperbolicity parallel to those
in the non-relative case. What before were statements about groups and spaces, now can be
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easily translated to statements about tuples. The notion of tuple also allows for generalizations
to spaces other than simplicial complexes.

Another advantage is that tuples allow defining the usual, i.e. non-relative, isoperimetric
function, which is well known and understood, and to use it to describe hyperbolicity in the
relative setting (see Definition 31, propositions 32 and 33). This also allows easy definition
of higher-dimensional isoperimetric functions (in combinatorial, topological, or homological
terms): just take the non-relative version as the definition and use it for relative things.

Many statements in this paper are parallel to the non-relative case (and this has been the
goal), but their proofs are often not. The main reason is that one has to deal with locally
infinite graphs, so usual finiteness considerations do not apply. To give a simple example, in a
Cayley graph of a finitely generated group, it is the case that there are only finitely many edge
loops of a given length, up to the group action. This property fails in the relative case for the
coned-off graph, so finer arguments are often required.

One can naturally talk about finitely generated tuples, and more generally, tuples of type Fn
and of type F (see 4.2). We say that a pair (Γ,Γ′) is hyperbolic if there exists a finitely generated
fine graph tuple (Γ,Γ′,G,V ′) with fine triangles (Definition 38). This notion of hyperbolicity
allows some peripheral subgroups to be finite. We show that this notion of hyperbolicity for
pairs is equivalent to a version of Bowditch’s relative hyperbolicity (Definition 35).

We describe the snake resolution Stς(Γ,Γ′) (= the relative standard projective resolution)
and other notions (sections 7 and 8) and use them to define both relative cohomology and
relative bounded cohomology.

Then we generalize the cohomological characterization of hyperbolic groups in [22, 23] to the
relative case:

Theorem 59. Let Γ be a group and Γ′ be a family of its subgroups. The following statements
are equivalent.

(a) (Γ,Γ′) is hyperbolic as in 5.1.
(b) There exists a finitely presented tuple (Γ,Γ′, X,V ′) such that X admits a (combinatorial)

isoperimetric function (for edge-loops), and the map H2
b (Γ,Γ

′;V ) → H2(Γ,Γ′;V ) is
surjective for all bounded QΓ-modules V .

(b′) There exists a finitely presented tuple (Γ,Γ′, X,V ′) such that X admits a (combinatorial)
isoperimetric function (for edge-loops), and the map Hn

b (Γ,Γ′;V ) → Hn(Γ,Γ′;V ) is
surjective for all bounded QΓ-modules V and all n ≥ 2.

(c) There exists a fine finitely presented tuple (Γ,Γ′, X,V ′) and the map H2
b (Γ,Γ

′;V ) →
H2(Γ,Γ′;V ) is surjective for all bounded QΓ-modules V .

(c′) There exists a fine finitely presented tuple (Γ,Γ′, X,V ′) and the map Hn
b (Γ,Γ′;V ) →

Hn(Γ,Γ′;V ) is surjective for all bounded QΓ-modules V and all n ≥ 2.
(d) There exists a tuple (Γ,Γ′, X,V ′) of type F such that X admits a (combinatorial) isoperi-

metric function (for edge-loops), and the map H2
b (Γ,Γ

′;V )→ H2(Γ,Γ′;V ) is surjective
for all bounded QΓ-modules V .

(d′) There exists a tuple (Γ,Γ′, X,V ′) of type F such that X admits a (combinatorial) isoperi-
metric function (for edge-loops), and the map Hn

b (Γ,Γ′;V )→ Hn(Γ,Γ′;V ) is surjective
for all bounded QΓ-modules V and all n ≥ 2.
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(e) There exists a fine tuple (Γ,Γ′, X,V ′) of type F and the map H2
b (Γ,Γ

′;V )→ H2(Γ,Γ′;V )
is surjective for all bounded QΓ-modules V .

(e′) There exists a fine tuple (Γ,Γ′, X,V ′) of type F and the map Hn
b (Γ,Γ′;V )→ Hn(Γ,Γ′;V )

is surjective for all bounded QΓ-modules V and all n ≥ 2.

Bounded QΓ-modules in this statement can be replaced with bounded RΓ-modules, bounded CΓ-
modules, or Banach modules.

We show that for hyperbolic pairs “the simplicial norm is indeed a norm”:

Theorem 60. Let (Γ,Γ′) be a hyperbolic pair and (Y, Y ′) be a classifying space for (Γ,Γ′)
as in 9.1. Then for any k ≥ 2 and any non-zero z ∈ Hk(Y, Y

′; R), the (relative) simplicial
(semi)norm of z is positive.

The first author is partially supported by NSF CAREER grant DMS-0228910. We wish to
express our gratitude to Robert Bieri for providing several references on relative cohomology,
and to François Dahmani for helpful comments.

2. Graphs and complexes.

2.1. Simplicial graphs. If G is a graph, we denote its set of vertices by V and its set of edges
by E . We will always assume in this work that no two edges in a graph have the same end
points, i.e. that G is a simplicial graph. Hence there exists, if any, a unique edge connecting
any two vertices.

The valence of a vertex is the number (in N ∪ {∞}) of edges containing this vertex. We
denote by V∞ the vertices of infinite valence.

The edges in E , unless mentioned otherwise, are assumed to be non-oriented. For e ∈ E
with vertices a, b we use the notations (a, b) for non oriented edge. In this notation the order
of vertices is not important. For any adjacent vertices a, b, since there are no multiple edges,
e = (a, b) is unique.

The edges of G are assigned length 1. This determines the length of any simplicial path α
in G, denoted `(α), which the number of times it passes over edges. Let d be the path metric
on G, defined as the infimum of the lengths of the edge paths connecting two points in G.

For e1, e2 ∈ E we measure also the d-distance between e and e′, considering them as subsets
in the graph G, i.e. d(e1, e2) := inf{d(x1, x2) | x1 ∈ e1 and x2 ∈ e2}. This is the same as the
minimal distance between the end points of e1 and e2. Similarly d(e, y) := inf{d(x, y) | x ∈ e}.
for e ∈ E and x ∈ V .

In a graph, a simple path is an injective edge path and a ray is an infinite simple path. A
loop is a closed simplicial path. A circuit is an injective loop.

Given a path α in G we denote by V(α) its set of vertices and by E(α) its set of edges.
For a path α and two vertices a, b on α, α[a,b] is the subpath of α connecting a and b, and if α is

an infinite path starting at x we denote by α[a) the subpath of α remaining after removing α[x,a].
A geodesic path in G is an injective simplicial path which has the shortest length among

all the paths connecting its endpoints. We will always parameterize a path α by the interval
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[0, `(α)]. For vertices a, b ∈ V , Geod(a, b) will denote the set of all geodesic paths in G going
from a to b.

We say that two vertices u, v ∈ G are adjacent if they lie on a same edge, and that an edge e
is incident to x ∈ V if x is an end point for e.

Let e1, e2 ∈ E . We say that the pair (e1, e2) is admissible (or the edges e1, e2 are admissible)
if e1 and e2 share a common vertex a. Clearly for e ∈ E the pair (e, e) is admissible. A sequence
of edges e0, . . . , en in E is admissible if each pair (ei−1, ei) is admissible. Note that with this
definition it is possible in an admissible sequence to have edge repetitions and two admissible
edges that are not consecutive in the sequence.

Given G we define a graph Gn as follows. V(Gn) := V(G) and distinct x, y in V(Gn) are
connected by an edge if and only if either (x, y) ∈ E(G) or x, y lie in some circuit of length at
most n. Clearly G ⊆ Gn.

2.2. Complexes. We will work in the category of simplicial complexes. If needed, the results of
this paper can be stated in the more general category of combinatorial cell complexes, described
as follows. A cellular map between cell complexes is combinatorial if it maps each open cell
homeomorphically onto an open cell. A combinatorial cell complex is obtained inductively on
dimension using combinatorial attaching maps (see for example [8, 1.8A]).

Given a simplicial complex X, G will always denote the 1-skeleton of X, so accordingly, V
and E will mean the sets of vertices and edges in X. In a simplicial complex, if x1, . . . , xn are
the vertices of an n-simplex, then (x1, . . . , xn) denotes this simplex.

Given a simplex σ in X, the star of σ, StarX(σ), is the union of the interiors of the simplices
of X having σ as a face and the closed star of σ, StarX(σ), is the union of the (closed) simplices
of X having σ as a face. The link LinkX(σ) of σ in X is StarX(σ) \ StarX(σ).

2.3. Angles. Let G be a graph. Given two admissible edges e1 = (a, b) and e2 = (a, c), the
angle, anga(e1, e2), between e1 and e2 at vertex a is the length of a shortest path from b to c in
G \ {a} (+∞ if there are none).

We will frequently omit the subscript a since there is no ambiguity at which vertex the angle
is defined.

One can similarly define the angle between two paths α1 and α2 sharing an endpoint a.
Suppose e ∈ α1, e

′ ∈ α2 are the first edges on these paths sharing the vertex a. Then the angle,
anga(α1, α2), between α1 and α2 at the vertex a, is anga(e, e

′). Given a path α connecting b, c
in G and a vertex a in α, the angle at the vertex a, anga(α) is anga(α[a,b], α[a,c]). The maximal
angle of α, maxang(α), is the maximum of the angles between pairs of consecutive edges of α.

The following remarks will be useful.

Proposition 1. Given three admissible edges e1, e2, e3 all adjacent to a vertex a in a graph G,
one has
• anga(e1, e2) = anga(e2, e1),
• anga(e1, e3) ≤ anga(e1, e2) + anga(e2, e3).

Proposition 2. Given l ≥ 2, any circuit of length l has a maximal angle at most l − 2.
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Proof. If (e1, e2) is an admissible pair in the circuit, the circuit itself gives a path of length µ−2
connecting the end points of e1, e2. �

2.4. Thin triangles. We will say that G has thin triangles if there exists a constant δ ≥ 0
such that all the geodesic triangles in G are δ-thin in the following sense: if [a, b] ∈ Geod(a, b),
[b, c] ∈ Geod(b, c), and [c, a] ∈ Geod(a, c) for a, b, c ∈ V , and if points ā ∈ [b, c], v, c̄ ∈ [a, b],
w, b̄ ∈ [a, c] satisfy

d(b, c̄) = d(b, ā), d(c, ā) = d(c, b̄), d(a, v) = d(a, w) ≤ d(a, c̄) = d(a, b̄),

then d(v, w) ≤ δ. Having thin triangles is equivalent to G being Gromov-hyperbolic.
One can equivalently formulate this in terms of the Gromov product in (G, d) which is defined

by

(a|b)c :=
1

2

(
d(a, c) + d(b, c)− d(a, b)

)
, a, b, c ∈ G.

G is hyperbolic if there exists a constant δ ≥ 0 such that for all a, b, c ∈ V , if [a, b] ∈ Geod(a, b),
[a, c] ∈ Geod(a, c) and if u ∈ [a, b] and v ∈ [a, c] satisfy d(a, u) = d(a, v) ≤ (b|c)a, then
d(u, v) ≤ δ.

Given a geodesic γ ∈ G, V(γ) and E(γ) denote the set of vertices and edges that occur in γ.
The following lemma is a collection of known results proved and elaborated in different languages
by people working on relative hyperbolicity. Here in order to complete the presentation we give
an explicit proof of the statements.

Lemma 3. Let G be a graph with the path metric d having δ-thin triangles. There exists a
constant κ depending only on δ such that given vertices a, b, c, and geodesics α ∈ Geod(b, c),
β ∈ Geod(a, c) and γ ∈ Geod(a, b), we have the following:

(1) If angz(α) > κ for some z ∈ α distinct from b and c, then z ∈ β or z ∈ γ.
(2) If z ∈ α, d(c, z) < (a|b)c and angz(α) > κ, then z ∈ β.
(3) If angc(α, β) > κ, then c ∈ γ.
(4) If b = a i.e. γ is a null geodesic, then angc(α, β) ≤ κ.

Proof. We set κ = 100δ + 100
(1) We will show that if z is in α and not in β or γ then angz(α) ≤ κ. Without loss of

generality we suppose that d(c, z) ≤ (a|b)c.
Consider x′, x′′ ∈ V(α) with d(z, x′) = d(z, x′′) = 2δ + 1 and d(c, x′′) < d(c, x′). If there are

no such vertices then set x′ = b and x′′ = c. Similarly consider y′, y′′ on β with d(c, y′) = d(c, x′)
and d(c, y′′) = d(c, x′′), if there are no such vertices then set y′ = a and y′′ = c. Note that
d(x′′, c) = d(y′′, c) ≤ (a|b)c.

Now by hyperbolicity we have d(x′′, y′′) ≤ δ, and if γ′′ ∈ Geod(x′′, y′′) then z /∈ γ′′, since
otherwise one has either d(z, x′′) ≤ δ, or x′′ = c = z, depending on whether γ′′ is an empty
path or not. Either case gives a contradiction to the choice of x′′, since d(z, x′′) = 2δ + 1 and
z 6= c (/∈ β). Moreover, either d(x′, y′) ≤ δ or there exist x1, y1 on γ such that d(x′, x1) ≤ δ
and d(y′, y1) ≤ δ.

In the first case pick γ′ ∈ Geod(x′, y′). Note that z /∈ γ′, since otherwise either d(z, x′) ≤ δ or
z = x′ = b, depending on whether γ′ is an empty path or not; either case gives a contradiction
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with d(z, x′) = 2δ+ 1 and c 6= b (/∈ γ). Consider the loop α[x′′,x′] · γ′ · β[y′,y′′] · γ′′ that has length
at most 10δ + 4, containing z. We know that z does not belong twice to these loop. Hence we
can find a circuit of length at most 10δ + 4 ≤ κ containing z, that controls the angle at z of α.

In the second case we consider the geodesic segments γ1 ∈ Geod(x′, x1) and γ2 ∈ Geod(y′, y1).
Again we see that γ1 and γ2 do not contain z since otherwise we would have d(z, x′) ≤ δ or
z = x′ = b and d(z, y′) ≤ δ or z = y′ = a, which, by the argument similar to the above,
contradicts the choice of x′ and y′. Now consider the loop γ′′ · α[x′′,x′] · γ1 · γ[x1,y1] · γ2.β[y′,y′′],
which has length at most 22δ + 8. It does not pass through z twice and thus there is a circuit
of length at most 22δ + 8 ≤ κ controlling the angle at z of α.

(2) If angz(α) > K then by the first part of the lemma we know that z ∈ β ∪ γ. Clearly if
d(c, z) < (a|b)c then z /∈ γ.

(3) In the above arguments we set c = z, and consider the vertices x′, y′ as in the proof of
(1). We see that either the loop α[c,x′] · γ′ · β[y′,c] that has length at most 5δ + 2 or the loop
α[c,x′] ·γ1 ·γ[x1,y1] ·γ2 ·β[y′,c] that has length at most 12δ+4 does not pass through c twice. Hence
angc(α, β) ≤ 12δ + 4 ≤ κ.

(4) is a direct corollary of (3). �

Corollary 4. Let G be a graph with the path metric d having δ-thin triangles and κ = κ(δ) the
constant given by Lemma 3. Let a, b, c be vertices in G, α ∈ Geod(b, c), β ∈ Geod(a, c) and
γ ∈ Geod(a, b), then we have

maxang(γ) ≤ max{maxang(α) + maxang(β) + 3κ, angc(α, β) + 2κ}.

Proof. If angz(γ) > κ, then by Lemma 3(1) either z ∈ α or z ∈ β.
Suppose that z ∈ α and z 6= c, then angz(γ) ≤ angz([b, z]α, [b, z]γ)+angz(α)+angz([c, z]α, [z, a]γ).

By Lemma 3(4) angz([b, z]α, [b, z]γ) ≤ κ. Moreover if angz([c, z]α, [z, a]γ > κ, by (3) applied to
[c, z]α and [z, a]γ instead of α, β says that z ∈ β. Thus angz([c, z]α, [z, a]γ ≤ angz([c, z]α, [c, z]β)+
angz(β)+angz([a, z]γ, [a, z]β). Again Lemma 3(4) gives that angz([c, z]α, [c, z]β) and angz([a, z]γ, [a, z]β)
are both at most than κ. Thus we have angz(γ) ≤ maxang(α) + maxang(β) + 3κ

If z ∈ β and z 6= c, the same argument is applied by echanging the roles of α and β.
Now if z = c then angz(γ) ≤ angz([z, b]γ, α) + angz(α, β) + angz(β, [z, a]γ) ≤ angz(α, β) + 2κ

by Lemma 3(4). �

The following result could also be rephrased in terms of the snake metric, which will be
defined in the next subsection. Thus this lemma 5 says that two edges satisfying the conditions
of the lemma remain at uniformly bounded distance from each other with respect to the snake
metric.

Lemma 5. Let G be a graph with the path metric d having δ-thin triangles and κ = κ(δ) the
constant given by Lemma 3. Let α ∈ Geod(c, b), β ∈ Geod(c, a), γ ∈ Geod(a, b) and x ∈ V(α),
e ∈ E(α), x′ ∈ V(β), e′ ∈ E(β) with d(c, x) = d(c, e) = d(c, x′) = d(c, e′) < (a|b)c, and
ω ∈ Geod(x, x′). Then maxang(ω) ≤ κ.

Moreover,

• if x 6= x′, then angx(ω, e) ≤ κ and angx(ω, e
′) ≤ κ;

• if x = x′, then angx(e, e
′) ≤ κ.
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Proof. First suppose that z 6= z′. We prove that angx(ω, e) ≤ κ. Now if angx(ω, e) > κ then
by Lemma 3(2) x belongs to a geodesic connecting x′ to b. In particular the path ω · [x, b]α is
actually a geodesic. Now again since angx(ω, e) > κ, by Lemma 3(2), x ∈ β or γ. In either case
we have a contradiction since if x ∈ β then x = x′ and if x ∈ γ then d(c, x) ≥ (a|b)c. Similarly
one shows that angx(ω, e

′) ≤ κ.
Now we suppose x = x′. If angx(e, e

′) > κ then again by Lemma 3(2), x ∈ γ which gives the
contradiction with d(c, x) < (a|b)c.

It remains to prove that maxang(ω) ≤ κ. If x = x′, there is nothing to prove. So suppose
x 6= x′. Note that if angu(ω) > κ then u ∈ [c, x]α or [c, x′]β. Let u, u′ be the vertices in α ∩ ω
and β ∩ ω such that d(x, u) and d(x′, u′) are maximal with angu(ω) > κ and angu′(ω) > κ.

Denote by α′ the path [c, u]α.[u, x]ω.[x, b]α and by β′ the path [c, u′]β.[u
′, x′]ω.[x

′, a]β. Clearly

these are geodesics in G. Let c′ ∈ α′ ∩ β′ with d(c, c′) ≤ d(c, x) maximal.
If u 6= u′ then by choice maxang([u, u′]ω) ≤ κ. Moreover, the argument as in the first

and second paragraphs shows that if u 6= u′ then ang([u, u′]ω, [u, x]ω and if u = u′ then
ang([u, x]ω, [u, x

′]ω) are all at most κ.
It remains to show that maxang([u, x]ω) and maxang([u, x′]ω) are at most κ. If for z ∈ [u, x]ω

distinct from u and x, we have maxang([u, x]ω) > κ, then z ∈ β′ by Lemma 3(1). Since
d(x′, z) > d(u, x′) > d(u′, x′), z /∈ [u′, x′]ω. Note also z /∈ [x′, a]β, since if not d(c, z) <
d(c, x) = d(c, x′) ≤ d(c, z). Finally we see that x /∈ [c, u′]β, since x = u otherwise. This gives a
contradiction. �

2.5. The snake metric dς. Given a graph G with its metric d, let e0, . . . , en be an admissible
sequence in E (see 2.1). The angle length of an admissible sequence is

∑n
i=1 ang(ei−1, ei). For

an arbitrary e, e′ ∈ E let dς(e, e
′) be the minimal angle length of an admissible sequence with

e0 = e and en = e′. dς is a metric on the set E . (dς takes infinite values on pairs that cannot be
connected by an admissible sequence, but we will not bother calling dς a “generalized metric”).
It seems reasonable to call dς a snake metric, and to call an admissible sequence (e0, . . . , en)
with dς(ei, ei+1) = 1 realizing the snake distance between e0 and en a snake geodesic. The
names come from the obvious picture one can draw to illustrate the definition.

Any edge path in G can be viewed as an admissible sequence of edges, so the notion of angle
length, or total angle, makes sense for paths in G: this is the sum of all angles along the path.

Lemma 6. For any e, e′ ∈ E, d(e, e′) ≤ dς(e, e
′).

Proof. Given e, e′ edges we consider an admissible sequence e1, . . . , en that realizes dς(e, e
′). If

n = 1, then d(e, e′) = dς(e, e
′) = 0, so we assume n ≥ 2. Since a subset of this sequence gives

a simple path from an end point of e to an end point of e′ we clearly have d(e, e′) ≤ n − 2.
Moreover since for all i, ang(ei−1, ei) ≥ 1 we also have dς(e, e

′) =
∑n

i=1 ang(ei−1, ei) ≥ n − 1.
Thus d(e, e′) ≤ dς(e, e

′)− 1 < dς(e, e
′). �

2.6. Fineness and fineness at some scale. Fineness was introduced by Bowditch in [6]
where he gives several equivalent formulations of the notion. A graph G is fine if for any given
integer n there is K ∈ [0,∞) such that for any edge e in G the cardinality of the circuits of
length n that contain e is at most K; or equivalently if for each vertex x in G the set of vertices
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adjacent to x in G are locally finite in G \ {x}. (Here G \ {x} is considered with its induced
metric and a set S ⊆ G \ {x} is called locally finite if for all x ∈ S and for all r > 0, the
intersection of S with the ball centered at x of radius r in G \ {x} is finite.)

We consider a weaker version of the notion. A graph G is fine at scale n if there is K ∈ [0,∞)
such that for any edge e in G the number of circuits of length at most n that contain e is at
most K.

A collection A of subgraphs of G is edge-finite if {A ∈ A | e ∈ L} is finite for each edge
e ∈ E(G). Let A be a set of simple paths in G. Consider the graph G[A] with vertex set
V(G[A]) = V(G), and edge set E(G[A]) = E(G) ∪ {(x, y) | x, y are endpoints of α ∈ L}.

The following has been proven in [6].

Lemma 7 ([6, Lemma 2.3]). If G is a fine graph and A is an edge-finite collection of simple
paths of bounded length in G, then the graph G[A] is also fine.

The following proposition shows that hyperbolicity strengthens the condition of fineness
at some scale to fineness at all scales. The proof of the result uses an adaptation of linear
isoperimetric inequality using the thin triangle property for graphs (see for example [7], [8]
Chapter III.H Proposition 2.7). A complete proof of the claim can be found in [6] as Proposition
8.1.

Proposition 8. For any δ ≥ 0 there exists n = n(δ) ≥ 0 such that if G is a graph with δ-thin
triangles, and it is fine at scale n, then G is fine. Moreover n(δ) can be taken to be linear in
terms of δ.

2.7. Fine triangles. Given a geodesic γ, E(γ) will denote the set of edges that occur in γ.

Definition 9. A graph G is said to have fine triangles if there exists δ ∈ [0,∞) depending only
on G with the following property. If α ∈ Geod(c, b), β ∈ Geod(c, a), e1 ∈ E(α), e2 ∈ E(β), and
d(c, e1) = d(c, e2) < (a|b)c, then dς(e1, e2) ≤ δ.

While working on this paper we learned that Osin, in a language different from the one we
use here, shows that the BCP property together with hyperbolicity ensures the fine triangles
condition; he uses the metric in the Cayley graph and considers the fine triangles property
up to an additional constant σ [28], so our notion of fine triangles is slightly stronger. It is
well known in the theory of relatively hyperbolicity that the BCP property is equivalent to the
fineness property of G (under assumption of weak hyperbolicity) [12, 29].

Proposition 10. G is a graph with thin triangles if and only if it is a graph with fine triangles.

Proof. We first show that having thin triangles implies having fine triangles. Thus we need to
show that there exits a constant δ′ depending only on the hyperbolicity constant δ such that
if α ∈ Geod(c, b), β ∈ Geod(c, a), e ∈ E(α), e′ ∈ E(β), and d(c, e) = d(c, e′) < (a|b)c, then
dς(e, e

′) ≤ δ′.
Let x ∈ V(α) and y ∈ V(β) be respectively the end points of e and e′ such that d(c, x) =

d(c, y) = d(c, e). Clearly d(c, x) = d(c, y) < (a|b)c. Let ω be a geodesic realizing d(x, y) which
is at most δ by thinness. By Lemma 5 we see that maxang(ω), angx(e, ω), angy(e

′, ω) are
all at most κ. In particular, dς(e, e

′) ≤ angx(e, γ) +
∑n

i=1 ang(ei−1, ei) + angy(e
′, γ), where
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e1, . . . , en are the consecutive edges of γ viewed as an admissible sequence in G. Thus we have
dς(e, e

′) ≤ δ′ := (δ + 1)κ, which is a constant depending only on δ.
The other direction follows from Lemma 6. Since d(e, e′) ≤ dς(e, e

′), the thin triangles
condition follows from the fine triangles condition. �

2.8. The edge graph GςL. Let G be a graph. For L ∈ [0,∞), the L-edge graph, or the edge
graph of G, is the graph GςL defined as follows. The vertex set of GςL is E . Two vertices e, e′ ∈ E of
GςL are connected by an edge in GςL if {e, e′} is an admissible pair of edges in G with dς(e, e

′) ≤ L.
The length of each edge (e1, e2) in GςL is set to be 1, and GςL is given the corresponding path
metric.

The language of edge graphs and snake metrics makes it easier to deal with relative hyperbol-
icity. An edge path γ in G can be thought of as a sequence of edges in G, therefore a sequence
of vertices in GςL; this allows working with the two metrics simultaneously. It might also happen
that all the vertices of G correspond to peripheral subgroups (see Section 5); as we will see later,
such graphs G are useful for giving a cohomological characterization of relative hyperbolicity.
The language of edge graphs can be conveniently used in this case. All the known results about
relative hyperbolicity can be equivalently restated in this language.

An L-graph is generally neither connected nor locally finite. However, the following lemmas
give sufficient hypotheses for this to hold.

Lemma 11. If G is a graph fine at scale L+2, then the balls in the edge graph Gς
L are uniformly

finite.

Proof. It suffices to prove that the valence of vertices in connected components of GςL are
uniformly bounded. Let e be a vertex in GςL. If e′ is a vertex adjacent to e in GςL, then
by definition there is an admissible sequence of edges ei with e0 = e and en = e′ such that
dς(e, e

′) =
∑n

i=1 ang(ei−1, ei) ≤ L. In particular ang(ei−1, ei) ≤ L for all i. Since G is fine at
scale L, there is a constant K independent of the choice of ei such that there are at most K
circuits in G of length L+ 2 containing ei, hence at most KL possibilities for e′. �

Lemma 12. If G is a graph with δ-fine triangles and it is fine at scale δ + 2, then Geod(u, v)
is finite for all u, v ∈ V(G).

Proof. Suppose G has δ-fine triangles. For edges e, e′ on geodesics α, β ∈ Geod(u, v) with
d(u, e′) = d(u, e) we have dς(e, e

′) ≤ δ. Consider the δ-graph Gςδ . Clearly any such two edges
e, e′ are on a same connected component of Gςδ . Since G is fine at scale δ + 2, by Lemma 11
we obtain that Gςδ is uniformly locally finite, hence there are only finitely many such pairs of
edges {e, e′}. In particular, the number of such edges depends only on δ since the bounds on
the cardinality of the balls are uniform. �

Given a vertex v in G and an edge graph GςL, we denote by LinkςL(v) the full subgraph of GςL
whose vertices are all the edges in G containing v, i.e in StarG(v) .

Lemma 13. Let X be a simplicial complex with the following properties.

• X is simply connected.
• X \ {v} is connected for each v ∈ V = X(0).
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Then for all L ≥ 1, LinkςL(v) is connected for all v ∈ V. In particular if G is the 1-skeleton
of X then the edge graph GςL is connected.

Proof. Given an admissible pair of edges e = (v, x), e′ = (v, y) in G, there exists a path α
connecting x to y in X \ {v}. Since X is simply connected, we can assume that α lies in the
full subgraph of G with vertex set LinkG(v) (definition in 2.2). In other words, there exists an
admissible sequence of edges e = e1, . . . , en = e′ such that ei = (v, xi), where xi are vertices of
α in LinkG(v) and ang(ei, ei+1) ≤ 1. Thus ei and ei+1 are connected by an edge in GςL, hence
in LinkςL(v), for L ≥ 1.

To see that GςL is connected it suffices to remark that G is connected, and there is a path
in G connecting any two given edges. Thus we consider this path as an admissible sequence,
and for each pair of edges that are consecutive in the sequence and incident to a vertex v we
connect them in LinkςL(v) to obtain the result. �

2.9. Complexes associated to (Γ,Γ′). In the case when a group Γ is torsion-free, relatively
hyperbolic with respect to a subgroup C and the subgroup admits a finite-dimensional clas-
sifying space, Dahmani showed the existence of a locally finite finite-dimensional contractible
complex for Γ [11, Lemma 2.1, Definition 2.1, Theorem 2.1]. He also states in [11, Theorem 6.2],
quoting an observation of Bowditch, that a similar argument gives, without the assumption on
the subgroup, a complex which is locally finite everywhere except at the vertices, and whose
vertex stabilizers are the conjugates of the subgroup C.

Below we exhibit a finite-dimensional contractible complex, associated to a group relatively
hyperbolic with respect to a family of subgroups. The group is not assumed to be torsion-free
and it acts with finite stabilizers of edges. Our construction uses the fineness property rather
than the BCP property. The existence of such a complex is independent of the group structure;
it can be constructed using only the fineness property and hyperbolicity for a given graph.

Definition 14. Let G be a fine graph with δ-thin triangles, and µ be a constant. A µ-path in
G is a path in G whose both maximal angle and length are at most µ.

To each subset S ⊆ V(G) of cardinality n + 1 such that any pair of its points can be joined
by a geodesic µ-path in G, associate an n-simplex σ(S).

The complex associated to G and µ, X = X(G, µ), is the one obtained from this set of
simplices by gluing along the face maps σ(S) ↪→ σ(T ) that correspond to inclusions S ⊆ T .

Note that there is a natural bijection between the 0-skeleta of G and of X, so we will always
identify them. Also there is a natural injection of G into the 1-skeleton of X.

The above definition of X can be equivalently restated as follows. First one defines the graph
G0 by taking V(G) as the vertex set and by connecting two vertices by an edge whenever they
can be joined by a geodesic µ-path in G. Then inductively on n ≥ 2 glue an n-simplex for each
subgraph of G0 with n+ 1 vertices which is a complete graph.

Recall that we write (a1, . . . , an) to refer to the simplex σ({a1, . . . , an}) in X. For the rest
of the section d will denote the path metric on G. Let κ = 100δ + 100 be the constant given
by Lemma 3. For each edge e = (a, b) in the 1-skeleton X(1) of X, a geodesic µ-path in G
connecting a to b will be referred to as a geodesic representing e in G.
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Lemma 15. Given a, b ∈ V(X) connected by an edge in X, there are only finitely many
c ∈ V(X) connected both to a and to b by edges in X.

Proof. Let c ∈ V(X) be connected to a and b by edges in X(1) and let α, β and γ be geodesics
representing in G the edges (b, c), (a, c) and (a, b), respectively.

We first show that α, β, γ can be chosen so that angc(α, β), angb(α, γ) and anga(β, γ) are all
at most λ = max{µ, κ}. Indeed, if angc(α, β) > κ then by Lemma 3(3) we have c ∈ γ. Thus
we can let α = [c, a]γ and β = [c, b]γ be geodesics representing in G the edges (a, c) and (b, c)
of X(1).

Now since the maximal angle of γ is at most µ, we have the required result as follows. If
e, e′ are two edges lying on any of the geodesics representing the edges (b, c), (a, c) and (a, b)
and chosen as above, then they satisfy dς(e, e

′) ≤ 2λ2, since the representing geodesics provide
admissible sequences between them. Hence they all lies in a ball of the L-edge graph GςL
where L > 2λ2. This completes the proof since the balls in the L-edge graph are finite by
Lemma 11. �

In particular we obtain the following results.

Corollary 16. If K is a subgraph of X(1) and K is complete, then V(K) is finite.

Corollary 17. Given an edge e in X, there are only finitely many simplices in X that contain e.
In particular X is finite dimensional.

We prove that X is contractible using a significant modification of the argument used by Rips
in the non-relative (hyperbolic) case and an adaptation of Dahmani’s Rips complex construction
[11] for the relatively hyperbolic case.

Lemma 18. Let K be a finite subcomplex of X. Given an edge e = (x, y) in K, let α be
a geodesic representing in G the edge e and suppose that there exists z ∈ V(α) such that
angz(α) > κ. Choose z so that d(z, x) is minimal among all z ∈ V(α) satisfying angz(α) > κ.

Then K is homotopic in X to a subcomplex K ′ of X with V(K ′) = V(K) ∪ {z} and
E(StarK′(x)) =

(
E(StarK(x)) \ {e}

)
∪ {(x, z)}.

This lemma says that we can homotop K to another subcomplex where the edge e of K is
replaced by two edges (x, z) and (z, y).

Proof. Note first that (x, y, z) is a 2-simplex of X; we denote it s. For all w 6= z in X(0),
if (x, y, w) is a 2-simplex in X, then (x, y, w, z) is a 3-simplex in X. Indeed, if β and γ are
geodesics in G representing the edges (x,w) and (w, y), respectively, then since angz(α) > κ,
by Lemma 3(1) z ∈ β or z ∈ γ. Thus there is a geodesic µ-path, namely a subsegment of β
or γ, connecting z to w. In other words, StarX(e) = StarX(s).

When z /∈ K, let N(s) be the complex whose simplices are (z, x = a1, y = a2, a3, . . . , an)
whenever (x = a1, y = a2, a3, . . . , an) is a simplex in StarK(e). The remark above shows
that N(s) is indeed a subcomplex of X. When z ∈ K we set N(s) := StarK(e). Denote
K ′ := (K ∪ N(s)) \ StarX(e) and M := N(s) \ StarX(e). Thus K ′ = (K \ StarK(e)) ∪M .
We claim that M and StarK(e) are homotopic in X, which would imply that K and K ′ are
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homotopic. By definition StarK(e) = N(s) \ StarX(z). So we will show that the inclusions of
StarK(e) and M in N(s) are homotopic in X by proving that they are all null-homotopic in X.

By definition when z /∈ K, N(s) can be seen as the complex obtained by coning off all
simplices of the subcomplex StarK(e) to z, hence both N(s) and StarK(e) are null-homotopic
since they can be contracted to z in X. When z ∈ K, this statement is true by definition.

To see that M is null-homotopic we first note that each simplex in M contains either the
edge (x, z) or (y, z). Now we run induction on the dimension of M . Let σ be a simplex of
maximal dimension in M . If σ has dimension 1 then M is the union of edges (x, z) and (z, y)

hence contractible on z. For higher dimension n we consider M \ σ, whose simplices contain

either (x, z) or (y, z), and we contract σ onto σ∩ (M \ σ). This intersection is contained in the
boundary of σ and has dimension n− 1. We perform this for each maximal simplex of highest
dimension in M , and apply the induction hypothesis to prove the claim. �

Theorem 19. Let κ = 100δ + 100 be the constant given by Lemma 3. If µ ≥ 3κ then the
complex X = X(G, µ) is contractible.

Proof. It suffices to take any finite subcomplex K of X and to show that it is contractible in X.
Fix a base point v ∈ V(K). Let x be a vertex in K maximizing the distance in G of v to vertices
of K, i.e l := d(v, x) is maximal. We argue by induction on l. At each induction step we apply
the same argument to each x that maximize d(x, v), in order to decrease l. Since K is finite,
at each step there are only finitely many such x.

For l = 1, let x ∈ V(K) be such that d(x, v) = 1. Now for all y ∈ V(K) distinct from v,
d(y, v) = 1 since d(x, v) is maximal. Since K is finite it is contractible to v in finitely many
steps.

Suppose l ≥ 1. Consider a geodesic γ in G connecting x to v and the vertex u ∈ γ such that
either

• d(u, x) = µ/2 with maxang([x, u]γ) ≤ κ and angu(γ) ≤ κ, or
• d(u, x) ≤ µ/2 and d(u, x) is minimal among all u satisfying angu(γ) > κ.

Note that by definition there exists an edge in X connecting x to u, since [x, u]γ is a µ-path.
We want to contract x to u. We must check that for each each edge (x, y) in K, there is a
simplex (x, y, u) in X, i.e that y and u are connected by an edge in X.

Let α be a geodesic µ-path representing (x, y) in G. Suppose there is z ∈ V(α) with angz(α) >
κ; we pick z so that d(z, x) minimal among all such z. Then by Lemma 18, K can be homotoped
to another complex K ′ with

V(K ′) = V(K) ∪ {z} and E(StarK′(x)) = (E(StarK(x)) \ {e}) ∪ {(x, z)}.

Since by our choice maxang([x, z]α) ≤ κ, the edge (x, z) is represented by a geodesic with
angles at most κ. Moreover if β is a geodesic connecting y to v, since angz(α) > κ we see
by Lemma 3(1) that either z ∈ β, hence d(z, v) < d(v, y) ≤ d(v, x) = l, or z ∈ γ, hence
d(z, v) < d(v, x) = l.

Repeating this argument finitely many times (there are only finitely many edges adjacent to
x in K) for each new complex, i.e replacing an edge (x, y) whose geodesic representative has
angles at most κ by the procedure described above we obtain a complex, that we continue to
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denote by K, for which all the edges adjacent to x have geodesic representatives in G with
maximal angle at most κ. Clearly the final complex K might have more vertices than the
initial one, but it remains finite. Moreover, the maximal distance l of vertices of K to v and
the set of vertices that realize the maximal distance to v in both complexes remain the same.
We therefore suppose that in K all the edges adjacent to x can be represented by geodesics
paths with maximal angles at most κ and length at most µ. We first note that angx(α, γ) ≤ κ.
Indeed, if not, by Lemma 3(3), x ∈ β. Since d(y, v) ≤ d(x, v), we must have x = y, which
contradicts the choice of y. We treat the two possible cases for the choice of u separately.
Case I d(u, x) = µ/2 with maxang([x, u]γ) ≤ κ and angu(γ) ≤ κ.

By thin triangles condition on G we have either d(u, q) ≤ δ for some q ∈ α with d(x, q) =
d(x, u) or d(u, p) ≤ δ for some p ∈ α with d(v, q) = d(v, u). In the first case, d(y, u) ≤
µ−µ/2+δ ≤ µ. In the second case, d(v, x) ≤ d(v, y)−d(y, p)+δ+µ/2 ≤ d(v, x)−d(y, p)+δ+µ/2.
Thus d(y, u) ≤ d(y, p) + δ ≤ µ/2 + 2δ ≤ µ.

We want to find a geodesic in G connecting y to u with maximal angle at most µ. Let β′ a
geodesic path connecting u, y in G. If maxang(β′) ≤ κ(≤ µ) then we have the required result.
So suppose there is a point p on β′ with angp(β

′) > κ, hence by Lemma 3(1) we would have
p ∈ [y, x]α or p ∈ [u, x]γ. Denote p1 the furthest point from y on β′∩α with angp1(β

′) > κ, and p2

be the furthest point from u on β′∩γ with angp2(β
′) > κ . We prove that [y, p1]α·[p1, p2]β′ ·[p2, u]γ

is a geodesic with required properties. First, maxang([y, p1]α) ≤ κ and maxang([p2, u]γ) ≤ κ by
hypothesis. Assume p1 6= p2. By the choice of p1 and p2 we have angp([p1, p2]β′) ≤ κ. Moreover,
angp1([y, p1]α, [p1, p2]β′) ≤ angp1(α) + angp1([x, p1]α, [p1, p2]β′), but angp1([x, p1]α, [p1, p2]β′) ≤
κ, since if not, by Lemma 3(2), p1 ∈ [x, p2]γ, and hence p1 = p2 by the definition of p2,
which contradicts the assumption p1 6= p2. Thus we have angp1([y, p1]α, [p1, p2]β′) ≤ 2κ.
Similarly angp2([u, p2]γ, [p1, p2]β′) ≤ angp2(γ) + angp2([x, p2]γ, [p1, p2]β′) ≤ 2κ. If p1 = p2

then [p1, p2]β′ is a null path and we have angp1([x, p1]α, [p1, x]γ) ≤ κ by Lemma 3(4), hence
angp1([y, p1]α, [p1, u]γ) ≤ angp1(α) + angp1([x, p1]α, [p1, x]γ) + angp1(γ) ≤ 3κ.
Case II d(u, x) ≤ µ/2 and d(u, x) is minimal among all u satisfying angu(γ) > κ.

Since angu(γ) > κ, we have either u ∈ α, in which case d(y, u) ≤ µ and the geodesic [y, u]α
satisfies the properties required by hypothesis, or u ∈ [y, v]β and d(y, u) ≤ d(x, u) ≤ µ since
d(x, v) ≥ d(y, v). The same argument as in Case I works to find a geodesic with all angles at
most µ.

In either case, moving x to u defines a homotopy of K onto another finite complex that does
not contain x. If {xi}i=1,...,r are the vertices of K that realize the maximal distance l, the same
argument can be applied to each xi consecutively to decrease l. �

3. Group actions on graphs and complexes

3.1. Finitely generated actions. Given a group Γ, let G be a graph with a simplicial Γ-
action. This is equivalent to saying that Γ acts on G by isometries with respect to the word
metric d.

Definition 20. The action of Γ on G is finitely generated, or is an F1-action, if the following
properties hold.

• G is connected.
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• G \ {v} is connected for each v ∈ V.
• There are only finitely many Γ-orbits in V and in E.
• The stabilizers of the edges in E are finite.

Lemma 21. If the action of a group Γ on a graph G is finitely generated, then G is fine at
scale n, as in 2.6, if and only if there are only finitely many orbits of circuits of length at most
n in G.

Proof. Suppose G is fine at scale n and there are infinitely many circuits li of length m ≤ n in
different orbits in G. Since there are only finitely many Γ-orbits in E , without loss of generality
we can assume that the loops are all distinct and that they all contain a fixed edge e. This
contradicts fineness at scale n.

For the other direction, suppose there are only finitely many orbits of circuits of length at
most n in G. If there are distinct circuits li of length m ≤ n all containing an edge e, we can
suppose after passing to a subsequence that li = γil for γi ∈ Γ all distinct, and hence e = γie

′,
where e′ is an edge in l. This contradicts the fact that the stabilizers of edges are finite in G. �

A pair stabilizer is the intersection of the stabilizers of two distinct vertices. The following
lemma is proved in [6]. It shows that in a fine graph, the finite edge stabilizers condition can
be replaced by finite pair stabilizers.

Lemma 22 ([6, Lemma 4.3]). If the action of a group Γ on a fine graph G is finitely generated
then all the pair stabilizers are finite.

Recall that for v ∈ V , LinkςL(v) is the full subgraph of GςL whose vertices are all the edges
in G incident to v.

Lemma 23. If the action of a group Γ on the graph G is finitely generated, then for any L ≥ 0,
Γ acts on the edge graph GςL by isometries with the following properties.

• There are only finitely many orbits of vertices in GςL.
• The stabilizers of the vertices and the edges in GςL are finite.
• For each v ∈ V, its stabilizer Stab(v) acts on LinkςL(v) with finite quotient.

Proof. Since Γ acts on G by isometries, it clearly also acts on an L-graph GςL by isometries.
Moreover, since there are only finitely many orbits of edges in G, there are only finitely many
orbits of vertices in GςL. By definition, the stabilizers of vertices in GςL are finite. Now if the
stabilizer of an edge (e, e′) in GςL was infinite, then the stabilizers of the edges e, e′ ∈ G would
be infinite, which would give a contradiction.

For all v ∈ V , LinkςL(v) is invariant under Stab(v). Suppose this action does not have
finite quotient. Then there exists an infinite sequence of vertices ei in LinkςL(v) in distinct
Stab(v)-orbits. Since there are only finitely many Γ-orbits of vertices in GςL, we can suppose
that ei = γie for distinct γi ∈ Γ and some vertex e in LinkςL(v). Moreover, after passing to a
subsequence and translating by an element of Γ, we can also assume that γi ∈ Stab(v), which
gives a contradiction. �
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3.2. Finitely presented actions.

Definition 24. An action of Γ on a complex X is finitely presented, or is an F2-action, if the
following properties hold.

• The action of Γ on the 1-skeleton X(1) is finitely generated.
• X is simply connected.
• There are only finitely many orbits of 2-simplices.

Note that when X is a simplicial complex the last condition is equivalent to saying that there
are only finitely many orbits of 3-circuits in X, hence by Lemma 21 equivalent to saying that
X(1) is fine at scale 3.

We denote by G the 1-skeleton and by V(X) the 0-skeleton of X.

Lemma 25. If the Γ-action on a simplicial complex X is finitely presented then for all L ≥ 1
the following hold.

• for all v ∈ V(X), LinkςL(v) is connected,
• GςL is connected, and
• Gς1 is uniformly locally finite.

Proof. Lemma 13 implies the first and second statements since X is simply connected and
G \{v} is connected for each v ∈ V(X). Moreover G is fine at scale 3, thus Lemma 11 says that
balls in Gς1 are uniformly finite. �

Lemma 26. If the Γ-action on a simplicial complex X is finitely presented, then for each v ∈ V,
its stabilizer Stab(v) is finitely generated.

Proof. Consider the edge graph Gς1 and the subgraph Linkς1(v) for v ∈ V(X). Linkς1(v) is
connected locally finite by Lemma 25. Moreover, Stab(v) acts on Linkς1(v) with finite quotient
and with finite edge stabilizers (Lemma 23), which completes the proof. �

4. Tuples

4.1. Graph tuples and tuples.

Definition 27. A graph tuple is a list (Γ,Γ′,G,V ′) with the following properties.

• Γ is a group.
• Γ′ = {Γi | i ∈ I} is a family of subgroups of Γ, possibly with repetitions, i.e. we allow

Γi = Γj for some i, j ∈ I.
• G is a graph with a Γ-action.
• V ′ is a Γ-invariant subset of V containing all the vertices of infinite valence in V, i.e.
V∞ ⊆ V ′.
• Each Γi ∈ Γ′ is the stabilizer of some vertex vi ∈ V ′, and (vi can be chosen for each
i ∈ I so that) Γi 7→ Γvi is a bijection between Γ′ and the set of Γ-orbits in V ′.

Definition 28. A tuple is a list (Γ,Γ′, X,V ′) such that X is a simplicial complex and
(Γ,Γ′, X(1),V ′) is a graph tuple.
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Any graph tuple is obviously a tuple. A priori we do not impose any finiteness conditions
on Γ, Γ′, or Γi. We will work in the category of simplicial complexes, but these notions allow
using other categories as well. If needed, similar definitions can be given for cell complexes,
combinatorial cell complexes, topological spaces, metric spaces, etc.

4.2. Finiteness conditions.

Definition 29. A tuple (Γ,Γ′, X,V ′) is finitely generated, or of type F1, if the Γ-action on
X(1) is finitely generated in the sense of Definition 20.

A tuple (Γ,Γ′, X,V ′) is finitely presented, or of type F2, if the Γ-action on X is finitely
presented in the sense of Definition 24.

More generally, a tuple (Γ,Γ′, X,V ′) is of type Fn for some n ≥ 2 if

• the Γ-action on X(1) is finitely generated,
• πk(X) = 0 for all k ≤ n− 1, and
• there are only finitely many orbits of k-cells for each k ≤ n.

A tuple is of type F∞, if it is of type Fn for any n. A tuple (Γ,Γ′, X,V ′) is of finite type, or
of type F , if it is of type F∞ and X is finite-dimensional.

These notions descend to pairs: a pair (Γ,Γ′) is called finitely generated, finitely presented,
of type Fn, F∞, F , if there exists a tuple (Γ,Γ′, X,V ′) which has the respective property.

The above notion of finite presentation is an equivalent restatement of Osin’s definitions [29].
(Γ,Γ′) is finitely presented in the sense of Definition 29 iff Γ is relatively finitely presented with
respect to Γ′ in the sense of [29]. The following result, which is parallel to [29, Theorem 1.1],
follows from the definition of a finitely presented tuple together with Lemma 26.

Theorem 30. If a tuple (Γ,Γ′, X,V ′) is finitely presented, then

(a) Γ′ is a finite family, and
(b) each Γi ∈ Γ′ is finitely generated.

Proof. (a) By definition there is a bijection between Γ′ and the set of Γ-orbits in V ′, which is
a finite set since there are only finitely manyΓ-orbits in ( V ′ ⊂) V since the Γ-action on G is
finitely generated. (b) follows from Lemma 26, since each Γi is the stabiliser of some vertex. �

4.3. Other conditions on tuples. A tuple (Γ,Γ′, X,V ′) is said to have thin or fine triangles,
if the 1-skeleton X(1) has, respectively, thin or fine triangles. A pair (Γ,Γ′) has thin or fine
triangles if there exists a tuple (Γ,Γ′, X,V ′) which has, respectively, thin or fine triangles (see
2.4 and Definition 9). A tuple (Γ,Γ′, X,V ′) is fine if X(1) is fine.

4.4. Isoperimetric functions for tuples. In a simply connected complex X, the area of a
loop is the minimum number of times it passes over two-cells during a null-homotopy, minimum
taken over all null-homotopies. For a loop l we denote its area by area(l).

Definition 31. Let (Γ,Γ′, X,V ′) be a finitely presented tuple. A function f : N → N is an
isoperimetric function for (Γ,Γ′, X,V ′) if it is an isoperimetric function for X in the non-
relative sense, i.e. it is a function such that the area of any loop in X of length at most l is at
most f(l).
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It is important in this definition that f take finite values; such a function f does not always
exist. A finitely presented tuple (Γ,Γ′, X,V ′) has a linear isoperimetric function in the above
sense if and only if Γ has a linear relative isoperimetric function with respect to Γ′ in the
sense of [29]. The same applies to quadratic, cubic, polynomial, exponential, etc isoperimetric
functions.

Proposition 32. Suppose a complex X admits a finitely presented action by a group Γ, then
X(1) is fine if and only if there exists an isoperimetric function for X.

Proof. Denote G := X(1) and suppose G is fine. We set f(l) to be the maximal area of circuits
of length l, which is finite, since by Lemma 21 for any given l there are only finitely many orbits
of l-circuits in X. If α is a loop of length l in G, it can be split α inductively into at most l
circuits of length at most l. Since each circuit has area at most f(l), the area of α is bounded
by lf(l), which implies that there is a well defined isoperimetric function.

For the other direction, first observe that there are only finitely many 2-cells containing any
given edge in G. Indeed, if there are distinct 2-cells ci each containing a given edge e, since there
are only finitely many orbits of two cells in X we can suppose after passing to a subsequence
that ci = γic for some γi, where γi are pairwise distinct. In particular, γie

′ = e for some
e′ ∈ E(c), which would give a contradiction with the fact that the stabilizers of edges are finite.

Now suppose that there is an isoperimetric function for X and that G is not fine. Then there
exist n ∈ N, e ∈ E and an infinite sequence of distinct circuits l1i of length n all containing e1. In
particular area(l1i ) ≤ f(n) <∞ for all i. After passing to a subsequence we can assume that for
all i, area(l1i ) = m1 ≤ f(n). We argue by induction on the areas of l1i . For each i consider m1

2-cells that contract l1i and the 2-cell ci among them containing e. Now we consider the loops
αi in G obtained from l1i replacing e1 by ci \ {e1}. By construction area(αi) = m1− 1 < m1 and
αi contains all the edges of ci distinct from e1. The loops αi do not have to be circuits, however
since l1i are all distinct we can find, by reducing αi, an infinite sequence of distinct circuits l2i ,
each containing at least one edge of ci \ {e1}. Moreover since ci \ {e1} has only finitely many
edges we can suppose after passing to a subsequence that all these circuits l2i contain the same
edge e2 andarea l2i = m2 < m1. Now we repeat the argument this time for l2i to obtain distinct
circuits l3i all containing an edge e3 and with area l1i = m3 < m2. This induction will give
eventually an edge contained in infinitely many disctinct 2-cells, which is a contradiction by
the first observation. �

One can relax the above statement for a complex whose 1-sequeleton has fine triangles as
follows.

Corollary 33. Suppose the Γ-action on a complex X is finitely presented and X(1) has δ-fine
triangles. Then there exists k depending linearly on δ such that X(1) is fine at scale k if and
only if there exists an isoperimetric function for X.

Proof. By Proposition 10 having fine triangles is equivalent to having thin triangles. Moreover
the constants involving depend each other linearly. Now by Proposition 8 we see that X(1) is
in fact fine. �

Proposition 34. Suppose (Γ,Γ′, X,V ′) is a finitely presented tuple. Then it is fine and has
fine triangles if and only if X satisfies a (combinatorial) linear isoperimetric inequality.
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In the case of relative hyperbolicity, the linearity of relative isoperimetric function for relative
presentations (rather than for tuples) was shown in [29]. The above proposition says that in our
setting of tuples the word “relative” is unnecessary: we consider the usual non-relative notion
of isoperimetric function on X. An advantage of this “tuple approach” is that the proof goes
through just as in the non-relative case.

Proof of Proposition 34. By Proposition 32 the fineness of X(1) is equivalent to the existence of
an isoperimetric function. It remains thus to verify that the fine triangle condition forces the
isoperimetric function to be linear and vice-versa. Now by Proposition 10 having fine triangles
is equivalent to having thin triangles. So clearly X has a linear isoperimetric function; see for
example [8, Chapter III.H Proposition 2.7] or [7]. The converse follows, for example, as in [27]
or [2, Chapter 2]. The proofs apply word-by-word. �

5. Relative hyperbolicity.

Definition 35. Let Γ be a group and Γ′ = {Γi | i ∈ I} be a family of its subgroups. Γ is called
relatively hyperbolic with respect to Γ′ if there exists a graph K on which Γ acts such that the
following conditions are satisfied.

• Γ is finitely generated.
• I is finite and each Γi is finitely generated.
• K is fine and has thin triangles.
• There are finitely many orbits of edges and each edge stabilizer is finite.
• There exists a Γ-invariant subset V ′ such that V∞ ⊆ V ′ ⊆ V and the stabilizers of

vertices in V ′ are precisely Γi and their conjugates.

In [6] Bowditch gave a combinatorial formulation of relative hyperbolicity for a group Γ and
showed that it is equivalent to the original Gromov’s definition [17]. It is assumed in [6] that
the elements of Γ′ are infinite subgroups, i.e. V ′ = V∞. Definition 35 is a slight generalization
of Bowditch’s relative hyperbolicity: we allow the elements of Γ′ to be finite as well as infinite.
The elements of Γ′ and their conjugates will be called peripheral subgroups, similarly to the
original definition.

We will refer to the graph K given in this definition as an associated graph. Bowditch also
shows that the condition that each Γi is finitely generated is equivalent to the condition that
the associated graph K has no cut vertices (which can be seen for example from Proposition 4.9
of [6], or by Lemma 3.1 of Part 2 in [34]). We however prefer giving a sketch of how to obtain
a graph with no cut vertices assuming that stabilisers of vertices are finitely generated. The
other direction can also be deduced from Theorem 26, since we show in the next section that
relatively hyperbolic groups admit a complex as required in this Theoerem (see Theorems 39,
41). We start with a graph K given as in Definition 35 with vertex set V . Generally the graph
K will have cut points. Suppose v ∈ V and denote Vv(K) the vertices adjacent to v in K. Now,
StabΓ(v) acts on Vv(K) with finite point stabilizers and finite quotient. Since all the stabilizers of
vertices in K are finitely generated, StabΓ(v) acts with finite quotient and finite edge stabilizers
on a locally compact graph H(v) with V(H(v)) = Vv(K) and with E(H(v))/ StabK(V ) finite.
We can repeat this construction Γ-equivariantly for all v in V . Finally let H be the graph with
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vertex set V and edge set E(K)∪
⋃
v∈V E(H(v)). Thus E(H) is finite and H has no cut vertices.

Moreover it can be easily shown that the graph H remains hyperbolic since we have added only
finitely many edges to K up to Γ-action, that H is fine since for each vertex v the set Vv(H)
remains locally finite in H \ {v} (see definition of fineness in section 2.6), and satisfies all the
other properties required by Definition 35.

Thus for the rest of the paper we will always additionally assume that a graph associated to
a relatively hyperbolic group has no cut vertices.

Definition 36. Let µ be a constant. Given a group Γ which is hyperbolic relative to Γ′, let
K be an associated graph. For each Γ-invariant set V ′ ⊃ V∞(K) of vertices in V(K), let
G = G(K,V ′, µ) be the graph with vertex set V(G) = V ′, in which two vertices are joined by an
edge if they can be joined by a geodesic path in K with both maximal angle and length at most µ.

Note that Γ acts on G. The following theorem shows that this action can be induced on a
nice graph tuple.

Theorem 37. Let Γ be a group hyperbolic relative to Γ′ and K be an associated graph. There
exists a constant µ0 > 0 (depending only on K and the action of Γ on K) such that for all
µ > µ0 and for any Γ-invariant set V ′ of vertices in V(K) containing V∞(K), the graph tuple
(Γ,Γ′,G(K,V ′, µ),V ′) is finitely generated, fine and with thin triangles.

Proof. Let v1, . . . , vn be an orbit representative of finite valence vertices in V(K). For each
vi choose two distinct vertices xi, yi in V∞(K). Let F be a finite subgraph of K containing
Geod(vi, xi), Geod(vi, yi) and Star(vi) for all i. Since K is fine and thin triangles, the first two
sets are finite by Lemma 12. Thus one can find a finite subgraph F . Now let η be a constant
greater than the maximal over ang(e, e′) where (e, e′) admissible edge pairs lying in F . Note
also that the choice of F depends only on K and the the action of Γ on K.

Set µ0 ≥ 100η. We claim that for all µ ≥ µ0, G = G(K,V ′, µ) is connected, has no cut
vertices. It is fine and has thin triangles. The action of Γ on G admits finitely many orbits of
edges and vertices, and stabilizers of edges in G are finite, and hence finitely generated.

Let x, y ∈ V ′. Since K is connected there is a geodesic path α connecting x to y in K. Denote
x = v1, . . . , vn = y the consecutive vertices of α, and ei = (vi, vi+1) edges of α. For each vi of
finite valence, since vi lies a Γ-translate of F , there exists a xi ∈ V∞ ⊂ V ′ and a geodesic [vi, xi]
with length and maximal angle at most η such that angvi

(ei, [vi, xi]) and angvi
(ei+1, [vi, xi]) are

at most η. For vi of infinite valence set vi = xi for the rest of the arguments.
Now by a simple argument we show that xi and xi+1 are connected by an edge in G. Indeed let

κ be the constant given as in Lemma 3 depending only on δ, the constant of hyperbolicity of K.
By Corollary 4 if β is a geodesic path connecting xi to vi+1 then maxang β ≤ maxang([xi, vi])+
3κ. Now if γ is a geodesic path connecting xi and xi+1, then again by the same lemma,
maxang β ≤ max{maxang(β) + maxang([vi+1, xi+1]) + 3κ, angvi+1

(β, [vi+1, xi+1]) ≤ 2η + 6κ.
Thus xi and xi+1 are connected by an edge e′i in G. Hence we found a path α′ in G, that is the
concatenation e′1.e

′
2 . . . e

′
n, connecting x, y.

Note that this argument also shows that G has no cut vertices. Indeed, given x, y, z ∈ V ′,
there is a path connecting x and y in K \ {z}. Let vi its vertices and xi as chosen above. By
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the definition of the set F for all i one can take the vertices xi in this argument distinct from z.
Hence there exists geodesic path in G \ {z} connecting x to y.

If d and dµ are the distances respectively in K and G, the same argument also shows that
dµ(x, y) ≤ d(x, y), since the length of α′ is at most n = d(x, y). Moreover if α′ is a geodesic
path in G connecting x to y and e′i are its consecutive edges then for all i there exists αi ∈ K
geodesic path of length and maximal angle at most µ. Note that the concatenation α1.α2 . . . αn
gives a path connecting x to y in G of length at most µdµ(x, y), and so d(x, y) ≤ µdµ(x, y).
Hence dµ(x, y) ≤ d(x, y) ≤ µdµ(x, y). In particular G and K are quasi isometric, and so G has
thin triangles.

Clearly there are only finitely many orbits of vertices in G since V(G) = V ′. Suppose that
given x and y in V ′ there exists a geodesic path α of length and maximal angle at most µ
connecting x to y in K. Then for any two edges e1, e2 on α dς(e1, e2) ≤ µ2. On the other hand
since K is fine by Lemma 11 for all L > 0 the edge graph Gς

L is locally finite. Thus there are
only finitely many such edges e1, e2 up to Γ-action, hence only finitely many such x and y up
to Γ-action. This implies that there are only finitely many orbits of edges in G.

Now the finiteness of the stabilisers of edges in G follows directly from 22. Indeed since K
fine and the action of Γ on K is finitely generated, so all the pair stabilisers in V(K), hence in
V(G) = V ′ are finite.

It remains to show that G is fine. Consider the collection A of simple paths in K of length
and maximal angle at most µ and the graph K[A] (see 2.6). This collection is edge-finite. In
fact the argument used in proving that there finitely many orbits of edges in G, shows that all
the edges lying on a geodesic path of length and maximal angle at most µ and containing a
fixed edge e in K lie in a ball of radius 1 centered at e in Gς

L where L = µ2. Thus there are
only finitely many of them, and hence only finitely many geodesics path in A containing all e.
Thus by Lemma 7, K[A] is fine. Clearly G is a subgraph of K[A], and is fine.

�

5.1. Hyperbolic tuples. We give a definition of relative hyperbolicity using tuples.

Definition 38. A tuple (Γ,Γ′, X,V ′) is hyperbolic if

• it is finitely generated as in Definition 29,
• has fine triangles as in 4.3, and
• is fine as in 2.6, 4.3.

A pair (Γ,Γ′) is called hyperbolic if there exists a hyperbolic tuple (Γ,Γ′, X,V ′).

Note that Proposition 8 and Proposition 10 allow us to replace in this definition fineness by
fineness at some scale, which is a priori a weaker condition.

Theorem 39. The following statements are equivalent.

(a) (Γ,Γ′) is a hyperbolic pair in the sense of Definition 38.
(b) Γ is hyperbolic relative to Γ′ in the sense of Definition 35.

Proof. By Proposition 10 having thin triangles is equivalent to having fine triangles, hence both
definitions can be reformulated using either property. Then (b)⇒ (a) follows from Theorem 37,
and (a)⇒ (b) by tracing definitions. �
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We now present two stronger, but equivalent, reformulations of hyperbolicity for pairs.

Theorem 40. A pair (Γ,Γ′) is hyperbolic if and only if there exists a finitely presented tuple
(Γ,Γ′, X,V ′) which has a linear isoperimetric function (as in Definition 31).

Proof. This is Proposition 34 (which is proved just as in the non-relative case). �

5.2. The ideal complex. The second reformulation is in terms of a higher-dimensional com-
plex X.

Theorem 41 (existence of ideal tuples). A pair (Γ,Γ′) is hyperbolic if and only if there exists
a hyperbolic tuple (Γ,Γ′, X,V ′) of type F such that V(X) = V ′. (See definitions 28, 29, 38.)

Definition 42. A tuple (Γ,Γ′, X,V ′) is called an ideal tuple if it is as in Theorem 41, i.e. if it
is hyperbolic, of type F , and V(X) = V ′. A complex X is called an ideal complex (for the pair
(Γ,Γ′)) if there exists an ideal tuple (Γ,Γ′, X,V ′).

This name comes from the fact that the vertices of X exactly correspond to (the left cosets
or conjugates of) the peripheral subgroups, i.e. the simplices in X are “ideal”. This is a
generalization of the geometric example described in the introduction.

Proof of Theorem 41. The “if” direction is obvious. For the “only if” direction, consider a
graph tuple (Γ,Γ′,G ′,V ′) guaranteed by Theorem 37, so that V(G ′) = V ′, G ′ is fine and has
δ-thin triangles for some δ. Let µ0 be a constant given by Theorem 37 depending only on G ′
and the Γ-action on G ′.

First consider for µ > µ0 the graph G = G(G ′,V ′, µ), defined as in Definition 36. Note that
V(G) = V(G ′) = V ′. By Theorem 37, the action of Γ on G is finitely generated, G is fine and
has thin triangles.

Now consider the finite-dimensional simplicial complex X = X(G ′, µ) constructed in 2.9.
Note that X is constructed by gluing a simplex to each complete subgraph of G = G(G ′,V ′, µ),
and X(1) = G. Theorem 19 says that for µ large enough (≥ 3(100δ + 100)), X is contractible.

Set µ ≥ max{3(100δ+ 100), µ0}. Now we know that X has thin triangles, since so does G =
X(1), and the action of Γ on G is finitely generated. Thus to show that the tuple (Γ,Γ′, X,V ′) is
hyperbolic of type F , it remains only to check that there are only finitely many orbits of i-cells
for each i. Now Lemma 17 says that for each edge in G there are only finitely many simplices
containing it. This together with finitely many orbits of edges implies finiteness of orbits of
i-cells for each i. �

5.3. Reconstructing the Cayley graph of Γ.

Lemma 43. Let (Γ,Γ′, X,V ′) be a finitely presented hyperbolic tuple and G := X(1). Then for
all L ≥ 1 the edge graph GςL satisfies the following.

• For all v ∈ V, LinkςL(v) is connected.
• GςL is connected.
• GςL is uniformly locally finite.

Moreover Γ acts on GςL with finite quotient and finite edge and vertex stabilizers.

GςL plays the role of a Cayley graph for Γ, it is reconstructed from the tuple.
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Proof. The connectedness follows from Lemma 25 and local finiteness from Lemma 11 since G is
fine, hence fine at any scale. The rest is obtained from Lemma 23 and the following remark. For
any group action on a uniformly locally finite graph with only finitely many orbits of vertices,
the action has finite quotient. �

6. Relative straightening.

6.1. Notations. We work with a hyperbolic tuple T = (Γ,Γ′, X,V ′) and generalize the con-
structions of [22]. In our relative setting it is convenient to work both with vertices and edges,
so definitions will modify accordingly. Since the action of Γ on X in general is not free, we
will need to average over certain sets of vertices and edges; the hyperbolicity of the tuple will
guarantee that we always average over finite sets.

For now, edges of G are assumed to be non-oriented. V(γ) and E(γ) are, respectively, the set
of vertices and edges in an edge path γ. For v, w ∈ V , W ⊆ V and t ∈ Z, denote

Geod(v,W ) =
⋃
w∈W

Geod(v, w),

V [v,W ] :=
⋃

γ∈Geod(v,W )

V(γ), E [v,W ] :=
⋃

γ∈Geod(v,W )

E(γ).

For a vertex w we will write E [v, w] and V [v, w] instead of E [v, {w}] and E [v, {w}].
V [v, w; t] := {x ∈ V [v, w] | d(v, x) = t}, E [v, w; t] := {e ∈ E [v, w] | d(v, e) = t},
E [v,W ; t] := {e ∈ E [v,W ] | d(v, e) = t} =

⋃
w∈W

E [v, w; t].

Let Bς(e, r) be the closed dς-ball at e of radius r with respect to the snake metric dς on edges.
For an edge path γ we will denote N(γ, r) ⊆ G and N ς(γ, r) ⊆ E the r-neighborhoods of γ in
the metrics d and dς , respectively.

For v, w ∈ V , e ∈ E [v, w] and r ∈ [0,∞), the set

Fl(v, w, e; r) := E [v,V ; d(v, e)] ∩Bς(e, r) ⊆ E [v,V ]

is the flower with respect to v, w, e, r. By Lemma 43, each ball Bς(e, r), and hence each flower,
is a finite set of edges, and for a fixed r, the cardinalities of the flowers are uniformly bounded.
Moreover, since there are only finitely many Γ-orbits of edges, its cardinality is bounded by
some ω = ω(T , r).

For a set S, QS is the Q-vector space spanned by S. The average of a finite subset S ′ ⊆ S is
the element of QS, denoted av(S ′), which is the characteristic function of S ′ divided by #S ′.

For e ∈ E [v,V ] denote avFl(v, w, e; r) := av
(
Fl(v, w, e; r)

)
∈ QE [v,V ]. The map avFl(v, w, · ; r)

extends by linearity to avFl(v, w, · ; r) : QE [v,V ] → QE [v,V ]. The fine triangles property and
Lemma 43 imply that E [v, w; t] is finite, so

avFl(v, w, av(E [v, w; t]); δ)

is a well-defined function on edges. By the fine triangles property, for any e ∈ E [v, w; t] its
support satisfies

supp avFl(v, w, av(E [v, w; t]); δ) ⊆ Bς(e, 2δ).
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6.2. The functions f(a, b; i) and f̄(a, b). For e ∈ E [v,V ], let ιv(e) be the v-initial vertex of e,
i.e. the vertex of e closest to v. By linearity this extends to a Q-linear map ιv : QE [v,V ]→ QV .
Similarly τv : QE [v,V ] → QV is the v-terminal vertex map. Define a Q-linear projection
pra : QE [a,V ] → QE [a,V ] toward a as follows. It suffices to describe pra only on edges
e ∈ E [v,V ].

• If d(a, e) = 0, let pra(e) := e.
• If d(a, e) > 0, let pra(e) := av(E [a, ιae; t]), where t is the largest integral multiple of 20δ

satisfying t < d(a, e).

The definition of pra will only be important for the case when d(a, e) is an integral multiple
of 20δ. In this case pra moves e toward a exactly by distance 20δ.

Now for all a, b ∈ X we define a 1-chain f(a, b) = f(a, b; 20δ) in X inductively on d(a, b).

• If d(a, b) ≤ 20δ + 1, the definition of f(a, b) is not important, for example one can set
f(a, b) := av(E [a, b; d(a, b)− 1]).
• If d(a, b) > 20δ + 1 and d(a, b) does not equal 1 modulo 20δ, let

f(a, b) := f
(
a, av(V [a, b; t])

)
,

where t is the largest integer multiple of 20δ satisfying t < d(a, b) (hence t < d(a, b)−1),
and f

(
a, av(V [a, b; t])

)
is defined by linearity in the second variable.

• If d(a, b) > 20δ + 1 and d(a, b) equals 1 modulo 20δ, let

f(a, b) := pra
(
avFl(a, b, av(E [a, b; d(a, b)− 1]); δ)

)
.

In the above definitions we used integral multiples of 20δ, which are convenient to describe
as numbers of the form 20δ + 20δn, n ∈ Z. One can deal equally well with the numbers of the
form i+ 20δn for a fixed i ∈ Z. Replacing 20δ + 1 with i+ 1 and integer multiples of 20δ with
numbers congruent to i modulo 20δ in the above definitions we obtain a 1-chain f(a, b; i) such
that each edge in its support is at distance i from a.

Proposition 44. The function f defined above satisfies the following properties:

(1) f(a, b; i) is a convex combination of edges.
(2) If d(a, b) > i, then supp f(a, b; i) ⊆ Fl(a, b; e, δ) for each e ∈ E [a, b; i].
(3) If d(a, b) ≤ i, then f(a, b; i) = av(E [a, b; d(a, b)− 1]).
(4) f is Γ-equivariant, i.e. f(ga, gb; i) = g(f(a, b; i)) for any a, b ∈ X(0) and g ∈ Γ.
(5) For each fixed i there exist L ∈ [0,∞) and λ ∈ [0, 1) such that for any a, b, c ∈ X(0),∣∣f(a, b; i)− f(a, c; i)

∣∣
1
≤ Lλ(b|c)a .

This is proved along the lines of [22, Proposition 3] inductively on d(a, b) using the fact that
flowers are uniformly finite. The proof goes through because of the following property which is
implied by the fine triangles condition.

• Suppose e1, e2 ∈ E [a,V , 20δn] satisfy d(τae1, τae2) ≤ 3δ, then for any ē1 and ē2 in the
supports of pra(e1) and pra(e2), respectively, we have dς(ē1, ē2) ≤ δ.
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For e ∈ E let star3δ(e) := av
(
Bς(e, 3δ)

)
; this extends by linearity to a map star3δ : QE → QE .

For a, b ∈ X(0) let

f̄(a, b) := star3δ

(
1

11δ + 1

16δ∑
i=5δ

f(a, b; i)

)
.

Proposition 45. The function f̄ defined above satisfies the following properties:

(1) f̄(a, b) is a convex combination of edges that are oriented toward a.
(2) Pick any γ ∈ Geod(a, b) and let I be the subset of edges e ∈ E(γ) such that 5δ ≤

d(a, e) ≤ 16δ − 1. If d(a, b) > 20δ, then supp f̄(a, b) ⊆ N ς(I, 2δ)
(3) If d(a, b) ≤ 20δ, then f̄(a, b) := av(E [a, b; d(a, b)− 1]).
(4) f̄ is Γ-equivariant, i.e. f̄(ga, gb) = g(f̄(a, b)) for any a, b ∈ X(0) and g ∈ Γ.
(5) There exist L ∈ [0,∞) and λ ∈ [0, 1) depending only on the tuple T such that for any

a, b, c ∈ X(0), ∣∣f̄(a, b)− f̄(a, c)
∣∣
1
≤ Lλ(b|c)a .

(6) There exists a constant λ′ ∈ [0, 1) depending only on T such that if a, b, c ∈ X(0), satisfy
(a|b)c ≤ 20δ and (a|c)b ≤ 20δ, then∣∣f̄(b, a)− f̄(c, a)

∣∣
1
≤ 2λ′.

(7) Let a, b, c ∈ X(0), γ ∈ Geod(a, b), and c ∈ N(γ, 4δ), then supp f̄(c, a) ⊆ N(γ, 4δ).

This is proved using Proposition 44 similarly to [22, Proposition 7]. The fine triangles property
and the following facts guarantee that the proof goes through.

• The number of edges in the support of f̄(a, b) is bounded by a constant depending only
on T .
• For all a, b, c ∈ X(0), if (a|b)c ≤ 20δ and (a|c)b ≤ 20δ, then there exist edges e1 ∈
supp f(b, a) and e2 ∈ supp f(c, a) such that d(a, e1) = d(a, e2) and dς(e1, e2) ≤ 3δ.

For e ∈ E , let ∂+(e) ∈ QV be the sum of the vertices incident to e, each taken with coeffi-
cient 1/2; this extends to a Q-linear map QE → QV . Then ∂+(f̄(b, a)) is a convex combination
of vertices which satisfies the same (properly restated) properties as f̄(b, a) does in the above
proposition.

6.3. The 1-chain q[a, b]. For each fixed a and b, f̄(b, a) is a function on the unoriented edges
of G. To talk about 1-chains we will now assume that there are two possible orientations for
each edge in G. A 1-chain in G is a function on oriented edges which takes opposite values on
oppositely oriented edges.

For a, b ∈ X(0) let

p′[a, b] :=
1

#Geod(a, b)

∑
γ∈Geod(a,b)

γ,

where γ is viewed as a 1-chain with boundary b − a. This makes sense because Geod(a, b) is
finite by Lemma 12.

For a, b ∈ X(0) we define a 1-chain q′[a, b] inductively on d(a, b) as follows.

• If d(a, b) ≤ 20δ, let q′[a, b] := p′[a, b].
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• If d(a, b) > 20δ, let

q′[a, b] := q′
[
a, ∂+

(
f̄(b, a)

)]
+ p′

[
∂+

(
f̄(b, a)

)
, b
]
,

where q′
[
a, ∂+

(
f̄(b, a))

]
and p′

[
∂+

(
f̄(b, a)), b

]
are defined by linearity in the second and first

variables, respectively. The inductive definition indeed works because

supp f̄(b, a) ⊆ B(a, d(a, b)− δ).
q′ satisfies ∂q′[a, b] = b− a, so q′ is a homological bicombing.

Proposition 46. The Q-bicombing q′ constructed above satisfies the following conditions.

(1) q′ is G-equivariant.
(2) q′ is quasigeodesic, i.e. there exists C ∈ [0,∞) such that supp q′[a, b] ⊆ N(γ, C) for any

γ ∈ Geod(a, b).
(3) There exist constants M ≥ 0 and N ≥ 0 such that, for all a, b, c ∈ X(0),∣∣q′[a, b]− q′[a, c]∣∣

1
≤M d(b, c) +N.

The proof is similar to [22, Proposition 8]. The following property is used to run induction.

• If a, b, c ∈ X(0) satisfy (a|c)b > 20δ, then for any x ∈ supp ∂+

(
f(b, a)

)
we have d(x, c) <

d(b, c).

Now let

q[a, b] :=
1

2

(
q′[a, b]− q′[b, a]).

Theorem 47. Let T = (Γ,Γ′, X,V ′) be a hyperbolic tuple. Then the Q-bicombing q in X
defined above satisfies the following properties.

(1) q is quasigeodesic.
(2) q is Γ-equivariant.
(3) q is anti-symmetric, i.e. q[a, b] = −q[b, a] for any a, b ∈ X(0).
(4) There exists a constant T such that, for any a, b, c ∈ X(0),∣∣∣q[a, b] + q[b, c] + q[c, a]

∣∣∣
1
≤ T.

The proof is similar to [22, Theorem 10] in the non-relative case, using Proposition 46.

6.4. Homological isoperimetric inequalities. Following Gersten we call a linear map f :
A → B between two normed vector spaces undistorted if there is a constant D ∈ [0,∞) such
that for any b ∈ Imf there exists a ∈ A with f(a) = b and |a| ≤ D|b|.

Definition 48. A simply-connected complex X satisfies a homological linear isoperimetric in-
equality over Q if the boundary map ∂ : C2(X,Q) → C1(X,Q) is undistorted with respect to
the `1-norms. More generally, a simply-connected complex X satisfies a homological linear
isoperimetric inequality for i-cycles over Q if the boundary map ∂ : Ci+1(X,Q) → Ci(X,Q) is
undistorted. Similar definitions are given for Z, R, C coefficients.
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Theorem 49. If X is a combinatorial cell complex with finitely many types of 2-cells, such
that X(1) is hyperbolic, then the boundary map ∂ : C2(X,Q)→ C1(X,Q) is undistorted, that is,
X satisfies a homological linear isoperimetric inequality (for 1-cycles) over Q. The same holds
for chains with coefficients in Z, R, and C.

Proof. This argument is due to Gersten. The combinatorial linear isoperimetric inequality was
shown in Proposition 34. Allcock and Gersten proved in [1] that any 1-cycle c over R in X can
be represented as c =

∑
i αici where ci is the chain represented by a simple oriented loop and

αi ∈ R, αi ≥ 0, coherently, i.e. so that |c|1 =
∑

i αi|ci|1. The argument can be generalized to Q
and Z coefficients (Theorem 6 in [23]). The combinatorial linear isoperimetric inequality implies
that there is a constant K ≥ 0 such that each ci can be filled with an integral 2-chain ai whose
`1-norm is bounded by K|ci|1. Then a :=

∑
i αiai is a filling of c satisfying |a|1 ≤ K|c|i. �

The support of a chain c, supp(c), is the closure of the union of simplices σ such that c(σ) 6= 0.
For a subset S ⊆ X, diam(S) is defined as the diameter of the set X(0) ∩S with respect to the
word metric d on X(1). For a chain c, diam(c) will stand for diam(supp(c))

The following theorem is similar to [21, Lemma 5.8] for the non-relative case, but the proof
is different. The same proof does not apply because in the relative case it is not true in general
that the number orbits of edge loops of a given length is finite. This is true only for circuits,
i.e. simple loops. The same problem happens in higher dimensions.

Theorem 50. Given a fine graph G with thin triangles, consider an ideal complex X as in
Theorem 19. Then for any integer i, there exist functions Ri,Mi : [0,∞) → [0,∞) with the
following property. For each cycle z ∈ Zi(X,Z) there exists a chain a ∈ Ci+1(X,Z) such that
∂a = z, diamd(a) ≤ Ri(diamd(z)), and |a|1 ≤Mi(diamd(z)) · |z|1.

Proof. Tracing the proof of Theorem 19, inductively on l one constructs Ri and Mi such that
diamd(a) ≤ Ri(l) and |a|1 ≤Mi(l) · |z|1. Then the statement follows. �

Theorem 51. If X is an ideal complex, then for each k ≥ 1 the boundary map ∂ : Ck+1(X,Q)→
Ck(X,Q) is undistorted, that is, X satisfies a homological linear isoperimetric inequality for
k-cycles over Q. The same holds for chains with coefficients in R and C.

Proof. The proof is similar to [21, Lemma 5.9]. The idea is that, inductively on dimension,
for each k-simplex σ in X one can form a cone from σ to a fixed vertex v. The cone is a
(k + 1)-chain whose support lies close to any geodesic from v to a vertex in σ, and whose `1-
norm is bounded independently of σ. The construction of the cone is inductive on dimension.
One uses concentric spheres at v to cut the cone over ∂σ into slices, which are i-cycles with
bounded support, then use Theorem 50 (rather than Lemma 5.8 in [21]) to fill each slice with
an (i + 1)-chain of bounded norm and bounded diameter. Once the cone is defined for each
simplex, by linearity one can cone-off any cycle, with the `1-norm of the cone bounded by a
multiple of the `1-norm of the cycle. �
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7. Cohomology and bounded cohomology.

The cohomology of a group relative to a subgroup were defined by Auslender [3] and further
studied by Takasu [32] and Ribes [30]. Trotter [33] defined homology and cohomology of a
group G with respect to any system of homomorphisms Gi → G. Bieri and Eckmann [5],
among other things, provided several equivalent ways to define the homology and cohomology
of a group relative to any system of its subgroups.

Bounded cohomology was first introduced by Johnson in the context of Banach algebras [20].
The reader is referred to works of Ivanov [18, 19], Noskov [25, 26], Monod [24] for definitions and
standard results about bounded cohomology. In what follows below, we describe the relative
(homogeneous) standard resolution, or the snake resolution, and use it to define both relative
cohomology and relative bounded cohomology. Our goal is to present the most geometrically
transparent definition possible of these formal notions.

7.1. Notations. We will use the rational coefficients Q, but everywhere in the paper Q can
be replaced with R or C.

A Γ-set is a set with Γ-action. For a Γ-set S, QS denotes the space of finitely supported
functions S → Q, with the induces left Γ-action. Equivalently, QS is the space of finite linear
combinations of elements of S with rational coefficients. QS is given the `1-norm∣∣∣∣∣∑

s∈S

αss

∣∣∣∣∣
1

:=
∑
s∈S

|αs|.

Let Γ be a group and Γ′ := {Γi | i ∈ I} be an arbitrary nonempty family of its subgroups,
possibly with repetitions. Let iΓ be a copy of Γ and denote

IΓ :=
⊔
i∈I

iΓ, Γ/Γ′ :=
⊔
i∈I

iΓ/Γi.

IΓ and Γ/Γ′ are Γ-sets by the left Γ-action on each iΓ. With our convention, QIΓ is the space
of all finitely supported functions IΓ→ Q and

QΓ/Γ′ :=
⊕
i∈I

Q[iΓ/Γi] =
⊕
i∈I

QΓ⊗Γi
Q

is the space of all finitely supported functions f : Γ/Γ′ → Q.
∆ will denote the kernel of the augmentation map ε : QΓ/Γ′ → Q, f 7→

∑
x∈Γ/Γ′ f(x).

7.2. Bounded modules. A bounded QΓ-module is a left QΓ-module V which is a normed
vector space over Q, with the norm taking values in [0,∞), such that the induced Γ action on V
is by uniformly bounded Q-linear operators. (Of course, we do not assume completeness here.)
The category of bounded QΓ-modules is the one whose objects are bounded QΓ-modules and
whose morphisms are the QΓ-morphisms that are bounded with respect to the norms in the
domain and the range. We will use the name b-morphism for morphisms in this category, to
distinguish them from the usual morphisms between modules.
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7.3. Functors `∞ and bHom. If S is a Γ-set and V a normed Q-vector space, `∞(S, V ) will
denote the space of functions S → V that are bounded with respect to the norm on V . The
norm on `∞(S, V ) is the `∞-norm

|f |∞ := sup{||f(s)|| | s ∈ S}.
For normed Q-vector spaces U and V , bHom(U, V ) will denote the space of bounded Q-linear

maps U → V . Each element of `∞(S, V ) extends by linearity to a Q-linear map QS → V . This
gives an isomorphism of normed modules

(1) `∞(S, V ) ∼= bHom(QS, V ).

If V is a bounded QΓ-module, `∞Γ (S, V ) will denote the space of functions in `∞(S, V ) that
commute with the Γ-actions on S and V .

If U and V are bounded QΓ-modules, then bHom(U, V ) is a bounded QΓ-module with respect
to the operator norm

||f || := sup {||f(u)||/||u|| | u ∈ U}
and the Γ-action given by

(gf)(u) := g(f(g−1u)), g ∈ Γ, f ∈ bHom(U, V ), u ∈ U.
bHomQΓ(U, V ) denotes the subspace of bHom(U, V ) consisting of QΓ-morphisms, i.e. the

operators that commute with the QΓ-actions on U and V . Equivalently, bHomQΓ(U, V ) is
the space of Γ-invariant elements of bHom(U, V ). (1) restricts to an isomorphism of normed
modules

`∞Γ (S, V ) ∼= bHomQΓ(QS, V ).

7.4. Projectivity and b-projectivity. A module P is called projective if for any morphisms
f : A → B and ϕ : P → B such that Imϕ ⊆ Im f , there exists a morphism ϕ′ : P → A such
that f ◦ϕ′ = ϕ. This is the usual notion of projectivity in the category of modules over a fixed
ring.

Recall that a b-morphism f : A → B is undistorted if there is a constant D ∈ [0,∞) such
that for any b ∈ Imf there exists a ∈ A with f(a) = b and |a| ≤ D|b|. A bounded module P
is called a projective bounded QΓ-module, or a b-projective QΓ-module, if for any undistorted
b-morphism f : A→ B and any b-morphism ϕ : P → B such that Imϕ ⊆ Im f , there exists a
b-morphism ϕ′ : P → A such that f ◦ ϕ′ = ϕ. This is projectivity in the category of bounded
QΓ-modules.

Lemma 52. If S is a Γ-set with all stabilizers finite, then QS is both a projective QΓ-module
and a b-projective QΓ-module with respect to the `1-norm.

Proof. The statements are easily checked when S is a free Γ-set, i.e. when the stabilizers of
points are trivial. Now suppose that S is a Γ-set with finite stabilizers. Replacing points in S
with finite sets one can produce a free Γ-set S ′ and a Γ-equivariant surjective map h : S ′ → S.
This induces a Q-linear map QS ′ → QS. A Q-linear map h′ : QS → QS ′ is defined by taking
for each x ∈ S the uniform distribution of 1 over the finite set h−1(x). h′ is a right inverse of h.
One uses these maps to deduce projectivity and b-projectivity of QS from those of QS ′. �
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A b-projective resolution of a module M is a sequence

(2) . . .→ P3 → P2 → P1 → P0 →M → 0

of (bounded) morphisms, where Pi are b-projective modules and each morphism is undistorted.

7.5. Cohomology of a pair (Γ,Γ′). In [5] Bieri and Eckmann define Hk(Γ,Γ′;V ), the coho-
mology of a pair (Γ,Γ′), or the relative cohomology of Γ with respect to Γ′, with coefficients in
a ZΓ-module V , and prove the following.

Proposition 53 ([5, Proposition 1.2]). Let (Γ,Γ′) be a pair as above, C a Γ-projective resolution
of Z, D a subcomplex of C which is a Γ-projective resolution of ZΓ/Γ′ such that D ↪→ C induces
ε : ZΓ/Γ′ ↪→ Z and that Q := C/D is Γ-projective. Then the cohomology sequences of C modulo
D and of Γ modulo Γ′ are isomorphic. More precisely, one has, for a Γ-module V , the following
diagram which commutes up to sign.

. . . −−−→ Hk(Γ,Γ′;V ) −−−→ Hk(Γ;V ) −−−→ Hk(Γ′;V ) −−−→ Hk+1(Γ,Γ′;V ) −−−→ . . .

∼=
y ∼=

y ∼=
y ∼=

y
. . . −−−→ Hk(Q;V ) −−−→ Hk(C;V ) −−−→ Hk(D;V ) −−−→ Hk+1(Q;V ) −−−→ . . .

We note that the same holds for QΓ modules. Given D, C, and Q as above, we will take
Hk(Q;V ) as the definition of Hk(Γ,Γ′;V ), the relative cohomology of Γ with respect to Γ′ with
coefficients in a QΓ-module V . Our definition of relative bounded cohomology will be parallel
to this one.

8. The snake resolution.

Let Γ be any group and Γ′ = {Γi | i ∈ I} be any nonempty family of its subgroups, possibly
with repetitions. In this section we will define a short exact sequence of chain complexes
St′ ↪→ St � Stς which correspond to Γ′, Γ, and Γ/Γ′, respectively. The snake resolution Stς

will be a relative version of the standard (i.e. homogeneous bar) resolution.

8.1. St: the standard resolution for IΓ. For i ∈ I and k ≥ 0, let Sk(IΓ) be the set of
sequences [x0, . . . , xk] such that xj ∈ IΓ for j ∈ {0, . . . , k}. The Γ-action on Sk(Γ) is left-
diagonal:

(3) g[x0, . . . , xk] := [gx0, . . . , gxk].

Denote
Stk(IΓ) := QSk(IΓ).

The elements of St∗(IΓ) are called the (standard) chains in IΓ. This gives the exact sequence

(4) St � Q : . . .→ St2(IΓ)
∂2→ St1(IΓ)

∂1→ St0(IΓ)
∂′0→ Q→ 0,

where Stk(Γ
′,Γ)

∂k→ Stk−1(Γ
′,Γ) is the usual boundary map defined on the basis by

∂k[x0, . . . , xk] :=
k∑
j=0

(−1)j[x0, . . . , x̂j, . . . , xk].
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In dimension 0 this formally means that ∂0 is the augmentation map

St0(Γ) ∼= QIΓ
∂0→ Q, f 7→

∑
x∈IΓ

f(x).

(4) and Lemma 52 show that

(5) St : . . .→ St2(IΓ)
∂2→ St1(IΓ)

∂1→ St0(IΓ)

is a projective resolution of Q.
Let

Stk(IΓ;V ) := HomQΓ(Stk(IΓ), V ).

The elements of Stk(IΓ;V ) are the (standard) cochains in IΓ with coefficients in V . Applying
bHomQΓ(·, V ) to (4) yields the cochain complex

(6) St∗(IΓ;V )←↩ V : . . .→ St2(IΓ;V )
δ2← St1(IΓ;V )

δ1← St0(IΓ;V )
δ0←↩ V ← 0

where Stk(IΓ;V )
δk← Stk−1(IΓ;V ) is the usual coboundary map

(7) (δkf)[x0, . . . , xk] :=
k∑
j=0

(−1)jf([x0, . . . , x̂j, . . . , xk]),

i.e. the one dual to ∂k.

8.2. St′: the standard resolution for (Γ′,Γ). This is going to be the standard resolution
of Γ′ with respect to Γ (that is, we will use induction from Γ′ to Γ, without mentioning it
explicitly). In what follows, it is convenient to think of Γi as of a subgroup in iΓ.

For each i ∈ I and k ≥ 0, let S ′k,i(Γ
′,Γ) be the set of sequences [x0, . . . , xk] such that

• xj ∈ iΓ for j ∈ {0, . . . , k}, and
• x−1

j−1xj ∈ Γi for j ∈ {1, . . . , k}.
The above two conditions equivalently say that all xj for j ∈ {0, . . . , k} belong to the same left
coset of Γi in iΓ. We have S ′k,i(Γ

′,Γ) ⊆ Sk(IΓ). Denote

S ′k(Γ
′,Γ) :=

⊔
i

S ′k,i(Γ
′,Γ) ⊆ Sk(IΓ).

S ′0(Γ
′,Γ) obviously identifies with IΓ. Let

St′k(Γ
′,Γ) := QSk(Γ′,Γ),

so in particular St′0(Γ
′,Γ) ∼= QIΓ. The elements of St′∗(Γ

′,Γ) are called the (standard) chains
in (Γ′,Γ). The Γ-action (3) on Stk(IΓ) restricts to an action on St′k(Γ

′,Γ) (the action is free on
the basis). This gives the exact sequence

(8) St′ � QΓ/Γ′ : . . .→ St′2(Γ
′,Γ)

∂′2→ St′1(Γ
′,Γ)

∂′1→ St′0(Γ
′,Γ)

∂′0→ QΓ/Γ′ → 0,



RELATIVE HYPERBOLICITY AND BOUNDED COHOMOLOGY 33

where St′0(Γ
′,Γ) ∼= QIΓ

∂′0→ QΓ/Γ′ is the augmentation map induced by the surjection

IΓ =
⊔
i∈I

Γ �
⊔
i∈I

Γ/Γi = Γ/Γ′

and ∂k is the restriction of the boundary homomorphism in (4). (8) and Lemma 52 show that

(9) St′ : . . .→ St′2(Γ
′,Γ)

∂′2→ St′1(Γ
′,Γ)

∂′1→ St′0(Γ
′,Γ)

is a projective resolution of QΓ/Γ′.

8.3. Stς: the snake resolution. This is the standard resolution for the pair (Γ,Γ′). For
resolutions St in (5) and St′ in (9) we denote Stςk(Γ,Γ

′) := Stk(IΓ)/St′k(Γ
′,Γ) for k ≥ 1;

sometimes we will write St′k, Stk, Stςk for simplicity. The `1-norm on Stςk is induced from the
`1-norm on Stk by the quotient map pr : Stk → Stςk. St and St′ fit in the diagram

(10)

St′ : . . .
∂′3−−−→ St′2(Γ

′,Γ)
∂′2−−−→ St′1(Γ

′,Γ)
∂′1−−−→ St′0(Γ

′,Γ)y y ∼=
y

St : . . .
∂3−−−→ St2(IΓ)

∂2−−−→ St1(IΓ)
∂1−−−→ St0(IΓ)y y y

. . .
∂ς
3−−−→ Stς2(Γ,Γ

′)
∂ς
2−−−→ Stς1(Γ,Γ

′) −−−→ 0.

This extends to the larger diagram

(11)

. . .
∂′3−−−→ St′2(Γ

′,Γ)
∂′2−−−→ St′1(Γ

′,Γ)
∂′1−−−→ St′0(Γ

′,Γ) −−−→ 0y y ∼=
y y

. . .
∂3−−−→ St2(IΓ)

∂2−−−→ St1(IΓ)
∂1−−−→ St0(IΓ) −−−→ 0y y y

. . .
∂ς
3−−−→ Stς2(Γ,Γ

′)
∂ς
2−−−→ Stς1(Γ,Γ

′) −−−→ 0.

(8) and (4) imply that the first two rows in the above diagram are exact in dimensions k ≥ 1
and induce the augmentation map QΓ/Γ′ → Q in dimension 0. Recall that ∆ was defined to be
the kernel of this map. The QΓ-modules Stςk(Γ,Γ

′) are free, so the long exact sequence for (11)
implies that the bottom row

(12) Stς : . . .
∂ς
3→ Stς3(Γ,Γ

′)
∂ς
3→ Stς2(Γ,Γ

′)
∂ς
2→ Stς1(Γ,Γ

′)

is a resolution of ∆ with a dimension shift, i.e. it extends to the exact sequence

(13) Stς � ∆ : . . .
∂ς
3→ Stς3(Γ,Γ

′)
∂ς
3→ Stς2(Γ,Γ

′)
∂ς
2→ Stς1(Γ,Γ

′)
∂ς
1→ ∆→ 0.

It is a tedious exercise using a higher dimensional version of the relative cone (see 10.5) to show
that the resolution Stς � ∆ is b-projective.
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8.4. Relative cohomology: standard resolution. (10) is a short exact sequence of chain
complexes that satisfies the assumptions of Proposition 53, therefore resolution (12) can be
used to define the relative cohomology H∗(Γ,Γ′;V ). That is, if we apply HomQΓ(·, V ) to Stς

and denote
Stkς (Γ,Γ

′;V ) := HomQΓ(Stςk(Γ,Γ
′), V ),

then Hk(Γ,Γ′;V ) is the homology of the resulting cochain complex

(14) Stς ← 0 : . . .
δ3ς← St2

ς (Γ,Γ
′;V )

δ2ς← St1
ς (Γ,Γ

′;V )← 0

at the term Stkς (Γ,Γ
′;V ). Here δkς is dual to ∂ςk, i.e. (δςk(f))(x) = f(∂ςkx) for x ∈ Stςk(Γ,Γ

′).
Equivalently, δkς is induced by δk in (7) and using diagram (11).

8.5. Relative bounded cohomology: standard resolution. For the relative bounded co-
homology of Γ with respect to Γ′ we use a parallel definition, applying bHom instead of Hom
to Stς . Denote

bStkς (Γ,Γ
′;V ) := bHomQΓ(Stςk(Γ,Γ

′), V )

This is a bounded QΓ-module with respect to the operator norm on bHom (the `∞-norm). Let
Hk
b (Γ,Γ

′;V ) be the homology of the cochain complex

(15) bStς ← 0 : . . .
δς
3← bSt2

ς (Γ,Γ
′;V )

δς
2← bSt1

ς (Γ,Γ
′;V )← 0

at the term bStk(Γ,Γ′;V ). There is a canonical map Hk
b (Γ,Γ

′;V ) → Hk(Γ,Γ′;V ) induced by
the inclusion bHom(·, V ) ⊆ Hom(·, V ).

9. Singular chains.

9.1. Relative bounded cohomology: singular resolution. Given a pair (Γ,Γ′), let Y and
Yi be the classifying spaces, or Eilenberg-MacLane spaces, for Γ and Γi, respectively, such that
Yi are pairwise disjoint subspaces of Y and the inclusions Yi ↪→ Y induce the inclusions Γi ↪→ Γ
on fundamental groups. We will say in this case that (Y, Y ′) is a classifying space for (Γ,Γ′).
(Y, Y ′) is called hyperbolic if (Γ,Γ′) is.

Let p : Ỹ → Y be the universal covering map, Ỹi := p−1(Yi), Ỹ ′ := tiỸi. We can easily
run all the above definitions using singular chains in Ỹ instead of standard chains. Let Sik(Y )
and Sik(Y

′) be the space of real singular k-chains in Y and Y ′, respectively, and Sik(Y, Y
′) :=

Sik(Y )/Sik(Y
′), each given the `1-norm with respect to the obvious bases Sk(Ỹ ), Sk(Ỹ ′), and

Sk(Ỹ , Ỹ ′) := Sk(Ỹ )\Sk(Ỹ ′) consisting of singular simplices. This gives b-projective resolutions
Si � Q, Si′ � QΓ/Γ′ and Siς � ∆ similar to those for St∗. Denote

bSikς (Ỹ , Ỹ
′;V ) := bHomQΓ(Siςk(Ỹ , Ỹ

′), V ) ∼= `∞Γ (Sk(Ỹ , Ỹ ′), V )

This is a bounded QΓ-module with respect to the operator norm on bHom (the `∞-norm).
Applying bHomQΓ(·, V ) to Siς gives the cochain complex

(16) bSiς ← 0 : . . .
δ3ς← bSi2ς (Ỹ , Ỹ

′;V )
δ2ς← bSi1ς (Ỹ , Ỹ

′;V )← 0.

Siς and Stς are b-projective resolutions of ∆. The standard argument (see for example I.7.3
and I.7.4 in [9]), but using b-projectivity of resolutions instead of projectivity, shows that there
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are bounded homotopy equivalences between Stς � ∆ and Siς � ∆ (which is identity on ∆
and such that the homotopy maps are bounded). This induces homotopy equivalences between
the dual complexes bStς and bSiς in dimensions ≥ 2. (Actually one can construct homotopy
equivalence between bStς ← 0 and bSiς ← 0 for all dimensions, but this is not needed for
this paper.) This implies that the relative bounded cohomology Hk

b (Γ,Γ
′;V ) for k ≥ 2 can be

equivalently defined as the homology of (16).
Similarly, applying HomQΓ(·, V ) instead of bHomQΓ(·, V ) to Siς yields the usual relative co-

homology Hk(Γ,Γ′;V ), and again, the inclusion bHom(·, V ) ⊆ Hom(·, V ) induces the canonical
map Hk

b (Γ,Γ
′;V )→ Hk(Γ,Γ′;V ).

9.2. Simplicial (semi)norm. Now we let the coefficients V be the trivial module R, which
we will drop from the notations, and (Γ,Γ′), Y and Y ′ be as in 9.1. Below we define the relative
version of Gromov’s simplicial (semi)norm [16] on Hk(Y, Y

′).
The simplicial (semi)norm of z ∈ Hk(Y, Y

′), denoted |z|1, is the infimum of the `1-norms of
the simplicial cycles representing z. Equivalently, this is the norm induced on Hk(Y, Y

′) via
the map Zk(Y, Y

′)→ Hk(Y, Y
′), where Zk(Y, Y

′) is the kernel of ∂k : Sik(Y, Y
′)→ Sik−1(Y, Y

′).
The singular cochain spaces Sik(Y ) and Sik(Y ′), Sik(Y, Y ′) are defined by applying Hom(·,R)

to the respective singular chain spaces; one checks that Sik(Y, Y ′) = Sik(Y )/Sik(Y ′).
Let Sikb (Y, Y

′) be the subspace of Sik(Y, Y ′) consisting of the relative cochains that are
bounded with respect to the `∞-norm dual to the `1-norm on chains. Taking the quotient
of Ỹ by Γ gives an isometric isomorphism between bSikς (Ỹ , Ỹ

′; R) and Sikb (Y, Y
′), therefore the

homology of the cochain complex

(17) . . .
δ4ς← Si3b(Y, Y

′)
δ3ς← Si2b(Y, Y

′)
δ2ς← Si1b(Y, Y

′)← 0,

denoted Hk
b (Y, Y

′; R), is isomorphic to Hk
b (Γ,Γ

′; R). Similarly the homology of

(18) . . .
δ4ς← Si3(Y, Y ′)

δ3ς← Si2(Y, Y ′)
δ2ς← Si1(Y, Y ′)← 0,

denoted Hk(Y, Y ′; R), is isomorphic to Hk(Γ,Γ′; R). The inclusion Sikb (Y, Y
′) ↪→ Sik(Y, Y ′)

gives the map Hk
b (Y, Y

′; R) → Hk(Y, Y ′; R), which is the same as the map Hk
b (Γ,Γ

′; R) →
Hk(Γ,Γ′; R) defined before.
Hk
b (Y, Y

′; R) possesses a particular seminorm | · |∞ induced from the `∞-norm in (17). The
following is proved just as its non-relative version in [4, Proposition F.2.2].

Proposition 54. For any z ∈ Hk(Y, Y
′; R),

|z|−1
1 = inf { |β|∞ | β ∈ Hk

b (Y, Y
′; R), 〈β, z〉 = 1},

where in the case |z|1 = 0 the infimum is understood to be taken over the empty set.

10. The cohomological characterization of relative hyperbolicity.

10.1. The cellular resolution for hyperbolic tuples. Suppose (Γ,Γ′) is a hyperbolic pair.
Let (Γ,Γ′, X,V ′) be an ideal tuple for the pair (Γ,Γ′) quaranteed by Theorem 41; so the tuple
is of type F and V(X) = V ′. One can equally well work with ideal tuples of type Fn; the
statements below will hold up to dimension n.
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Ck(X) will denote the space of k-chains in X with rational coefficients. It follows from
Definition 27 of graph tuples that there is a bijection between V ′ and Γ/Γ′. V ′ is a subcomplex
of X, this gives the obvious chain complex

(19) C′ � QΓ/Γ′ : . . .→ 0→ 0→ C0(V ′)
∼=→ QΓ/Γ′ → 0.

Let ∂0 : C0(X)→ Q be the augmentation map. Since X is contractible, the sequence

(20) C � Q : . . .
∂3→ C2(X)

∂2→ C1(X)
∂1→ C0(X)

∂0→ Q→ 0

is exact. By Lemma 52, C is a projective QΓ-resolution of Q.
The inclusion V ′ ⊆ X gives a chain map C′ → C which induces the augmentation map

QΓ/Γ′ → Q in dimension -1. The following diagram is C′ ↪→ C � C/C′:

(21)

C′ : . . . −−−→ 0 −−−→ 0 −−−→ C0(V ′)y y ∼=
y

C : . . .
∂3−−−→ C2(X)

∂2−−−→ C1(X)
∂1−−−→ C0(X)

∼=
y ∼=

y y
. . .

∂ς
3−−−→ C2(X)

∂ς
2−−−→ C1(X) −−−→ 0.

The isomorphism in dimension 0 comes from the fact that the tuple is ideal.
Denote Cς the bottom row of (21) in dimensions ≥ 1, i.e. the sequence

(22) Cς : . . .
∂ς
3→ C2(X)

∂ς
2→ C1(X).

The diagram (21) extends to

(23)

. . . −−−→ 0 −−−→ 0 −−−→ C0(V ′) −−−→ 0y y ∼=
y

. . .
∂3−−−→ C2(X)

∂2−−−→ C1(X)
∂1−−−→ C0(X) −−−→ 0

∼=
y ∼=

y y
. . .

∂ς
3−−−→ C2(X)

∂ς
2−−−→ C1(X) −−−→ 0.

The first two rows in (23) induce the augmentation ε : QΓ/Γ′ � Q in dimension 0. By the
long exact sequence, the bottom row is exact in dimensions ≥ 1 and induces ∆ in dimension 1,
hence there is an exact sequence

(24) Cς � ∆ : . . .
∂ς
3→ C2(X)

∂ς
2→ C1(X)

∂ς
1→ ∆→ 0.

This is a partial resolution of ∆ with a dimension shift. It can also be thought of simply as a
shorter version of (20), because ∆ is isomorphic to the kernel of ∂0. Lemma 52 says that this
resolution is both projective and b-projective.
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10.2. Chain maps between resolutions. We have two chain complexes for the pair (Γ,Γ′):
(12) and (22) are resolutions of ∆ with a dimension shift. We will define chain maps between
them.

Since Cς is projective, there exists a chain map ψ∗ for the diagram

(25)

Stς � ∆ : . . .
∂ς
3−−−→ Stς2(Γ,Γ

′)
∂ς
2−−−→ Stς1(Γ,Γ

′)
∂ς
1−−−→ ∆ −−−→ 0

ψ2

x ψ1

x ∥∥∥
Cς � ∆ : . . .

∂ς
3−−−→ C2(X)

∂ς
2−−−→ C1(X)

∂ς
1−−−→ ∆ −−−→ 0.

Recall that we put the `1-norm on Stςk(Γ,Γ
′) and Ck(X). Each ψk is a QΓ-morphism and is

bounded because Ck(X) is a finitely generated QΓ-module.
A chain map ϕ∗ for the diagram

(26)

Stς � ∆ : . . .
∂ς
3−−−→ Stς2(Γ,Γ

′)
∂ς
2−−−→ Stς1(Γ,Γ

′)
∂ς
1−−−→ ∆ −−−→ 0

ϕ2

y ϕ1

y ∥∥∥
Cς � ∆ : . . .

∂ς
3−−−→ C2(X)

∂ς
2−−−→ C1(X)

∂ς
1−−−→ ∆ −−−→ 0

is defined as follows. For each i ∈ I, let vi be the vertex stabilized by Γi. Define a map
ver : IΓ → V ′ by ver(x) := x · vi for x ∈ iΓ. This map sends each left coset of Γi in iΓ to a
vertex in V ′, and is surjective. Preimages of the vertices in V ′ are exactly the left cosets, i.e.
the elements of Γ/Γ′. Extending by linearity gives the map ver : QIΓ→ QV ′.

Define ϕ′1 : St1(IΓ) → C1(X) by ϕ′1([x0, x1]) := q[ver(x0), ver(x1)], where q is the bicombing
from Theorem 47, and extending by linearity. One checks that ϕ′1 vanishes on St′1(Γ

′,Γ) ⊆
St1(IΓ), so it induces a morphism ϕ1 : Stς1(Γ,Γ

′) → C1(X). This defines the map ϕ∗ in
dimension 1.

The morphism ϕ1 is not bounded in general, but the composition ϕ1◦∂ς2 is, by Theorem 47(3-
4). By Theorem 49, ∂ς2 = ∂2 : C2(X) → C1(X) is undistorted, and by Lemma 52, Stς2(Γ,Γ

′) is
b-projective, so there exists a bounded morphism ϕ2 that makes the above diagram commutative.
For higher dimensions, ∂ςk = ∂k : Ck(X)→ Ck−1(X) is undistorted by Theorem 51, so the same
argument gives a bounded QΓ-morphism ϕk for k ≥ 2.

Since Stς and Cς are projective, the chain maps

ψ∗ : (Cς � ∆)→ (Stς � ∆) and ϕ∗ : (Stς � ∆)→ (Cς � ∆)

described above are chain homotopy equivalences. Applying HomQΓ(·, V ) to the two chain
complexes yields dual cochain complexes C∗

ς and St∗ς and the dual chain maps ϕ∗ : C∗
ς → St∗ς

and ψ∗ : St∗ς → C∗
ς . Since ϕ∗ and ψ∗ are mutually inverse chain homotopy equivalences, the

chain map ϕ∗ ◦ψ∗ induces the identity map on the relative cohomology Hk(Γ,Γ′;V ) for k ≥ 2.

10.3. Filling 0-cycles. A 0-cycle is a 0-chain whose sum of coefficients is 0. Any c ∈ St0(IΓ)
can be uniquely written as c = c+ − c−, where c+, c− ∈ St0(IΓ) have non-negative coefficients
and mutually disjoint supports. If c is a 0-cycle, then |c+|1 = |c−|1 = 1

2
|c|1. If c+ and c− are
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explicitly written as c− =
∑

x∈IΓ α
−
x x, c+ =

∑
y∈IΓ α

+
y y, define

Φ[c] :=
1

|c+|1

∑
x∈IΓ

∑
y∈IΓ

α−x α
+
y [x, y] =

1

|c−|1

∑
x∈IΓ

∑
y∈IΓ

α−x α
+
y [x, y].

One checks that

(27) ∂(Φ[c]) = c and
∣∣Φ[c]

∣∣
1

=
|c|1
2
,

so Φ(c) is a filling of c.

10.4. The cone. A k-cycle in St is an element of ZStk(IΓ) := Ker(∂k : Stk(IΓ)→ Stk−1(IΓ)),
and a k-boundary in St is an element of BStk(IΓ) := Im(∂k+1 : Stk+1(IΓ)→ Stk(IΓ)). We have
ZStk(IΓ) = BStk(IΓ), i.e. the two notions coincide.

For each 1-chain b =
∑

y0,y1∈G β[y0,y1][y0, y1] in St, the cone over b with vertex y is the 2-chain

[y, b] :=
∑

y0,y1∈G

β[y0,y1][y, y0, y1].

If b happens to be a cycle, then ∂[y, b] = b.

10.5. The relative cone. A k-cycle in Stς , or a relative standard k-cycle, is an element of

ZStςk(Γ,Γ
′) := Ker

(
∂ςk : Stςk(Γ,Γ

′)→ Stςk−1(Γ,Γ
′)
)
,

and a k-boundary in Stς , or a relative standard k-boundary, is an element of

BStςk(Γ,Γ
′) := Im

(
∂ςk+1 : Stςk+1(Γ,Γ

′)→ Stςk(Γ,Γ
′)
)
.

Here we denote Stς0(Γ,Γ
′) := ∆. Since (13) is exact, we have ZStςk(Γ,Γ

′) = BStςk(Γ,Γ
′) for

k ≥ 1, i.e. the two notions coincide.
Since St′k is a direct summand of Stk, there is an QΓ-morphism j : Stςk → Stk which is a

section of the projection morphism pr : Stk → Stςk. Equivalently, j(c) is the restriction of c to
Sk(IΓ)\S ′k(Γ′,Γ). For a 1-chain a in St and a left coset s ∈ Γ/Γ′, ∂sa will denote the restriction
of ∂a to s ⊆ IΓ.

For a relative standard 1-cycle b, the relative cone of b with vertex y is the relative 2-chain

[y, b]ς := pr
[
y, b−

∑
s∈Γ/Γ′

Φ[∂s(j(b))]
]
∈ Stς2.

One checks that this definition makes sense and, using (27), that

(28) ∂ς [y, b]ς = b ∈ Stς1 and
∣∣[y, b]ς∣∣1 ≤ 2|b|1.

Also, if α is a relative 2-cocycle and c is a relative 2-chain, then c− [y, ∂ςc]ς is a relative cycle,
hence a relative boundary, so

〈
α, c− [y, ∂ςc]ς

〉
= 0 and

(29)
〈
α, c
〉

=
〈
α, [y, ∂ςc]ς

〉
.
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10.6. The cohomological characterization. Denote C
(1)
i (X) the space of `1-summable i-

chains in X, with coefficients in either Z, Q, R, or C. Let B
(1)
1 (X) be the image of the

boundary map ∂2 : C
(1)
2 (X) → C

(1)
1 (X), with the filling norm | · |f induced from the norm on

C
(1)
2 (X):

(30) |b|f := inf{|a|1
∣∣ a ∈ C(1)

2 (X), ∂a = b}.

Theorem 55. Let X be a simply connected combinatorial complex with a uniform bound on
the number of boundary edges in 2-cells. The following statements are equivalent.

(1) X has thin triangles.
(2) There is K ≥ 0 such that for any 1-cycle b in X over Q, |b|f ≤ K|b|1.

The same holds for cycles over Z, R, and C.

Proof. (1) ⇒ (2) was proved in [23, Theorem 7] for the case when the complex X is simply
connected and admits a cocompact action by a finitely presented group. The argument is
mostly due to Gersten. The same argument applies under the above assumptions for X.

For (2) ⇒ (1), assume that (1) does not hold and consider the following lemma due to
Ol’shanskii.

Lemma 56 ([27, Lemma 3]). Suppose the bisizes of triangles in a geodesic space Y are un-
bounded. Then for any t0 > 0 there exists a hexagon in Y with thickness t > t0 and perimeter
at most 46t.

The assumption of having unbounded bisizes in a geodesic metric space is equivalent to non-
hyperbolicity of the space, i.e. to not having thin triangles [27], so this assumption is satisfied
for our G := X(1). Then the conclusion of the lemma means that there exist

• a sequence of numbers t tending to ∞,
• a geodesic hexagon w = w(t) in G for each t,
• a (geodesic) side γ in each w, and
• a vertex p ∈ γ,

such that

• d(e, γ′) ≥ t, where γ′ denotes the union of the sides in w other than γ, and
• the perimeter of w, l(w), is at most 46t.

This allows running the argument similar to [23, Proposition 8], using hexagons instead of
quadrilaterals, to show that (2) does not hold. The idea is to take any filling of w and slice it
by concentric spheres at p; then show that the sum of the areas of the slices grows quadratically
in t. This method was originally used by Ol’shanskii’ to show that groups with subquadratic
(combinatorial) isoperimetric functions are hyperbolic. [23, Proposition 8] proves a homological
version of that statement, using 2-chains instead of van Kampen diagrams. �

Recall the Definition 4.2 of finitely presented tuples and Definition 38 of hyperbolic tuples.
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Theorem 57. Let (Γ,Γ′, X,V ′) be a finitely presented tuple such that X admits a (combinato-
rial) isoperimetric function in the sense of Definition 31. Suppose that the map H2

b (Γ,Γ
′;V )→

H2(Γ,Γ′;V ) is surjective for all bounded QΓ-modules V . Then there is K ≥ 0 such that for
any 1-cycle b in X over Q, |b|f ≤ K|b|1. The same is true when V is in the class of bounded
RΓ-modules, bounded CΓ-modules, or Banach modules.

Proof. We adapt the argument in [23, p.70-72] to the relative case. It suffices to prove the
statement for the smallest class, that is the class of Banach modules; those are Banach spaces
over R with a linear Γ-action such that the operator norms of the elements of Γ are uniformly
bounded.

Let V := B
(1)
1 (X). This is a Banach space with respect to the filling norm (30).

The chain maps ϕ∗ and ψ∗ defined in 10.2 are in the category of QΓ-modules, so for each k,
ϕk and ψk are linear maps commuting with the Γ-action. Denote for simplicity Cς

k := Ck(X,Q)
and Stςk := Stςk(Γ,Γ

′; Q). Consider the dual cochain complexes

Ck
ς := Ck

ς (X,V ) := HomQΓ(Cς
k, V ) and Stkς := Stkς (Γ,Γ

′;V ) := HomQΓ(Stkς , V )

with the coboundary maps denoted δς and the dual maps

ϕ∗ : C∗
ς ← St∗ς and ψ∗ : St∗ς ← C∗

ς .

The cochain map ψ∗ ◦ ϕ∗ is homotopic to the identity map, hence ψ∗ ◦ ϕ∗ induces the identity
map on cohomology H∗(G, V ) in dimensions ≥ 2.

The universal cocycle u ∈ C2
ς is the 2-cochain u : Cς

2 → V which coincides with the compo-
sition

C2(X,Q)
∂ς
2→ B1(X,Q) ↪→ B

(1)
1 (X,Q).

One checks that u is indeed a cocycle. By the above observations,

(31) u = (ψ2 ◦ ϕ2)(u) + δςv

for some 1-cochain v : Cς
1 → V .

Since ϕ2(u) is a cocycle in St2
ς and the map H2

b (Γ,Γ;V ) → H2(Γ,Γ′;V ) is surjective by the
assumption,

(32) ϕ2(u) = u′ + δςv
′,

for some 1-cochain v′ ∈ St1
ς and a bounded 2-cocycle u′ ∈ St2

ς , i.e.

(33) |u′|∞ <∞.
The above information is demonstrated by the diagrams

Stς∗

ϕ∗

��

= Stς∗(Γ,Γ
′; Q)

and

u′, v′ ∈ St∗ς

ψ∗

��

= St∗ς (Γ,Γ
′;V )

a, b ∈ Cς
∗

ψ∗

OO

= C∗(X,Q) u, v ∈ Cς
ς

ϕ∗

OO

= C∗(X,V ).

Let
〈
·, ·
〉

: Ck(X,V ) ⊕ Ck(X,Q) → V and
〈
·, ·
〉

: Stkς (Γ,Γ
′;V ) ⊕ Stςk(Γ,Γ

′; Q) → V be the
standard pairings.
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Pick any 1-boundary b ∈ B1(X,Q) and any 2-chain a with ∂a = b. The goal is to show that
|b|f ≤ K|b|1 for some uniform constant K.

By (31),

b = ∂a =
〈
u, a
〉

=
〈
(ψ2 ◦ ϕ2)(u) + δv, a

〉
=
〈
(ψ2 ◦ ϕ2)(u), a

〉
+
〈
v, b
〉
.

Pick any y ∈ IΓ. Since ϕ2(u) is a cocycle, using (28), (29) and (32),〈
(ψ2 ◦ ϕ2)(u), a

〉
=
〈
ϕ2(u), ψ2(a)

〉
=
〈
ϕ2(u), [y, ∂ς(ψ2(a))]ς

〉
=

=
〈
ϕ2(u), [y, ψ1(b)]ς

〉
=
〈
u′ + δςv

′, [y, ψ1(b)]ς
〉

=
〈
u′, [y, ψ1(b)]ς

〉
+
〈
v′, ∂ς [y, ψ1(b)]ς

〉
=

=
〈
u′, [y, ψ1(b)]ς

〉
+
〈
v′, ψ1(b)

〉
=
〈
u′, [y, ψ1(b)]ς

〉
+
〈
ψ1(v′), b

〉
.

Combining the two formulas above with (28),

b =
〈
u′, [y, ψ1(b)]ς

〉
+
〈
ψ1(v′) + v, b

〉
,

|b|f ≤
∣∣∣〈u′, [y, ψ1(b)]ς

〉∣∣∣
f

+
∣∣∣〈ψ1(v′) + v, b

〉∣∣∣
f
≤

≤ |u′|∞ ·
∣∣∣[y, ψ1(b)]ς

∣∣∣
1
+
∣∣∣ψ1(v′) + v

∣∣∣
∞
· |b|1 =

= 2|u′|∞ ·
∣∣ψ1(b)

∣∣
1
+
∣∣∣ψ1(v′) + v

∣∣∣
∞
· |b|1 ≤

≤
(
2|u′|∞ · |ψ1|∞ +

∣∣∣ψ1(v′) + v
∣∣∣
∞

)
· |b|1.

This will give the desired inequality once we prove that all the norms in the parentheses are
finite. The cochain u′ is bounded by definition (by a constant depending only on the choice of
Γ and X, see (33)). The maps ψ1 : Cς

1 → Stς1 and ψ1(v′) + v : Cς
1 → V are QΓ-morphisms.

Their boundedness (by constants depending only on Γ and X) is immediate from the following
simple lemma which is proved similarly to [23, Lemma 10].

Lemma 58. Let S be a Γ-set with finitely many Γ-orbits. Suppose V is a bounded QΓ-module
and f : QS → V is a QΓ-morphism. Then f is bounded with respect to the `1-norm on QS,
i.e. |f |∞ <∞.

This finishes the proof of Theorem 57. �

Theorem 59. Let Γ be a group and Γ′ be a family of its subgroups. The following statements
are equivalent.

(a) (Γ,Γ′) is hyperbolic as in 5.1.
(b) There exists a finitely presented tuple (Γ,Γ′, X,V ′) such that X admits a (combinatorial)

isoperimetric function (for edge-loops), and the map H2
b (Γ,Γ

′;V ) → H2(Γ,Γ′;V ) is
surjective for all bounded QΓ-modules V .

(b′) There exists a finitely presented tuple (Γ,Γ′, X,V ′) such that X admits a (combinatorial)
isoperimetric function (for edge-loops), and the map Hn

b (Γ,Γ′;V ) → Hn(Γ,Γ′;V ) is
surjective for all bounded QΓ-modules V and all n ≥ 2.

(c) There exists a fine finitely presented tuple (Γ,Γ′, X,V ′) and the map H2
b (Γ,Γ

′;V ) →
H2(Γ,Γ′;V ) is surjective for all bounded QΓ-modules V .
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(c′) There exists a fine finitely presented tuple (Γ,Γ′, X,V ′) and the map Hn
b (Γ,Γ′;V ) →

Hn(Γ,Γ′;V ) is surjective for all bounded QΓ-modules V and all n ≥ 2.
(d) There exists a tuple (Γ,Γ′, X,V ′) of type F such that X admits a (combinatorial) isoperi-

metric function (for edge-loops), and the map H2
b (Γ,Γ

′;V )→ H2(Γ,Γ′;V ) is surjective
for all bounded QΓ-modules V .

(d′) There exists a tuple (Γ,Γ′, X,V ′) of type F such that X admits a (combinatorial) isoperi-
metric function (for edge-loops), and the map Hn

b (Γ,Γ′;V )→ Hn(Γ,Γ′;V ) is surjective
for all bounded QΓ-modules V and all n ≥ 2.

(e) There exists a fine tuple (Γ,Γ′, X,V ′) of type F and the map H2
b (Γ,Γ

′;V )→ H2(Γ,Γ′;V )
is surjective for all bounded QΓ-modules V .

(e′) There exists a fine tuple (Γ,Γ′, X,V ′) of type F and the map Hn
b (Γ,Γ′;V )→ Hn(Γ,Γ′;V )

is surjective for all bounded QΓ-modules V and all n ≥ 2.

Bounded QΓ-modules in this statement can be replaced with bounded RΓ-modules, bounded CΓ-
modules, or Banach modules.

Proof. Implications (b′)⇒ (b), (c′)⇒ (c), (d′)⇒ (d), (e′)⇒ (e), (d)⇒ (b), (d′)⇒ (b′), (e)⇒ (c),
(e′)⇒ (c′) are obvious. Equivalences (b)⇔ (c), (b′)⇔ (c′), (d)⇔ (e), (d′)⇔ (e′) follow from
Proposition 32.
(a)⇒ (e′) Fix any bounded QΓ-module V . Since (Γ,Γ′) is hyperbolic, by Theorem 41 there
exists a tuple (Γ,Γ′, X,V ′) of type F with V(X) = V ′, and therefore we obtain chain maps ϕ∗
and ψ∗ as in 10.2.

Take any n ≥ 2 and any relative n-cocycle f in Stnς (Γ,Γ
′;V ) = HomQΓ(Stςn(Γ,Γ

′), V ). The
cocycle f is not necessarily bounded, but the composition f ◦ ψn : Cn(X,Q) → V is, by
Lemma 58, because there are only finitely many Γ-orbits of n-simplices in X and f ◦ ψn is a
QΓ-morphism.

Since the standard resolution Stς∗ is projective, the composition ψ∗ ◦ ϕ∗ is homotopic to the
identity map of Stς∗, and therefore the dual chain map ϕ∗ ◦ ψ∗ : St∗ς (Γ,Γ

′;V ) → St∗ς (Γ,Γ
′;V )

induces the identity map on the relative cohomology in dimensions n ≥ 2. This implies that the
relative cocycle (ϕn ◦ ψn)(f) is cohomologous to f . But (ϕn ◦ ψn)(f) = f ◦ ψn ◦ ϕn is bounded
because f ◦ψn and ϕn are. This proves the surjectivity of the map Hn

b (Γ,Γ′;V )→ Hn(Γ,Γ′;V ).
(b)⇒ (a) Suppose to the contrary that there exists a finitely presented tuple (Γ,Γ′, X,V ′) such
that X(1) is fine, but the pair (Γ,Γ′) is not hyperbolic. This implies that this tuple (Γ,Γ′, X,V ′)
is not hyperbolic, i.e. X(1) does not have fine triangles. Proposition 10 implies that X(1) does
not have thin triangles. By Proposition 32, X admits a linear isoperimetric function. Now
theorems 55 and 57 imply that X(1) has thin triangles, which is a contradiction. �

10.7. The non-vanishing of the simplicial (semi)norm.

Theorem 60. Let (Γ,Γ′) be a hyperbolic pair and (Y, Y ′) be a classifying space for (Γ,Γ′)
as in 9.1. Then for any k ≥ 2 and any non-zero z ∈ Hk(Y, Y

′; R), the (relative) simplicial
(semi)norm of z is positive.
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Proof. Take any such z. Since R is a field, using the relative simplicial resolution Si∗(Y, Y ′)
from 9.1 one can find α ∈ Hk(Y, Y ′; R) such that 〈α, z〉 = 1. Since Hk

b (Y, Y
′; R)→ Hk(Y, Y ′; R)

is the same as Hk
b (Γ,Γ

′; R) → Hk(Γ,Γ′; R), Theorem 59 implies that α is the image of some
β ∈ Hk

b (Γ,Γ
′; R), hence 〈β, z〉 = 〈α, z〉 = 1. Now Proposition 54 implies that |z|1 > 0. �

The relative statements proved in this paper imply the non-relative ones. The non-relative
case is recovered by taking Γ′ to be the family consisting of the trivial subgroup.
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